Efficient and Generic Interactive Segmentation Framework to Correct
Mispredictions during Clinical Evaluation of Medical Images
- URL: http://arxiv.org/abs/2108.02996v1
- Date: Fri, 6 Aug 2021 08:06:18 GMT
- Title: Efficient and Generic Interactive Segmentation Framework to Correct
Mispredictions during Clinical Evaluation of Medical Images
- Authors: Bhavani Sambaturu, Ashutosh Gupta, C.V. Jawahar, Chetan Arora
- Abstract summary: We suggest a novel conditional inference technique for deep neural networks (DNNs)
Unlike other methods, our approach can correct multiple structures simultaneously and add structures missed at initial segmentation.
Our method can be useful to clinicians for diagnosis and post-surgical follow-up with minimal intervention from the medical expert.
- Score: 32.00559434186769
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semantic segmentation of medical images is an essential first step in
computer-aided diagnosis systems for many applications. However, given many
disparate imaging modalities and inherent variations in the patient data, it is
difficult to consistently achieve high accuracy using modern deep neural
networks (DNNs). This has led researchers to propose interactive image
segmentation techniques where a medical expert can interactively correct the
output of a DNN to the desired accuracy. However, these techniques often need
separate training data with the associated human interactions, and do not
generalize to various diseases, and types of medical images. In this paper, we
suggest a novel conditional inference technique for DNNs which takes the
intervention by a medical expert as test time constraints and performs
inference conditioned upon these constraints. Our technique is generic can be
used for medical images from any modality. Unlike other methods, our approach
can correct multiple structures simultaneously and add structures missed at
initial segmentation. We report an improvement of 13.3, 12.5, 17.8, 10.2, and
12.4 times in user annotation time than full human annotation for the nucleus,
multiple cells, liver and tumor, organ, and brain segmentation respectively. We
report a time saving of 2.8, 3.0, 1.9, 4.4, and 8.6 fold compared to other
interactive segmentation techniques. Our method can be useful to clinicians for
diagnosis and post-surgical follow-up with minimal intervention from the
medical expert. The source-code and the detailed results are available here
[1].
Related papers
- No Masks Needed: Explainable AI for Deriving Segmentation from Classification [6.647179199462945]
We introduce a novel approach that fine-tunes pre-trained models specifically for medical images.<n>Our method integrates Explainable AI to generate relevance scores, enhancing the segmentation process.<n>Unlike traditional methods that excel in standard benchmarks but falter in medical applications, our approach achieves improved results on datasets like CBIS-DDSM, NuInsSeg and Kvasir-SEG.
arXiv Detail & Related papers (2025-08-06T15:18:00Z) - U-Net in Medical Image Segmentation: A Review of Its Applications Across Modalities [0.0]
Recent advancements in Artificial Intelligence (AI) and Deep Learning (DL) have transformed medical image segmentation (MIS)
These models enable efficient, precise pixel-wise classification across various imaging modalities.
This review explores various medical imaging techniques, examines the U-Net architectures and their adaptations, and discusses their application across different modalities.
arXiv Detail & Related papers (2024-12-03T08:11:06Z) - MedUHIP: Towards Human-In-the-Loop Medical Segmentation [5.520419627866446]
Medical image segmentation is particularly complicated by inherent uncertainties.
We propose a novel approach that integrates an textbfuncertainty-aware model with textbfhuman-in-the-loop interaction
Our method showcases superior segmentation capabilities, outperforming a wide range of deterministic and uncertainty-aware models.
arXiv Detail & Related papers (2024-08-03T01:06:02Z) - CT-GLIP: 3D Grounded Language-Image Pretraining with CT Scans and Radiology Reports for Full-Body Scenarios [53.94122089629544]
We introduce CT-GLIP (Grounded Language-Image Pretraining with CT scans), a novel method that constructs organ-level image-text pairs to enhance multimodal contrastive learning.
Our method, trained on a multimodal CT dataset comprising 44,011 organ-level vision-text pairs from 17,702 patients across 104 organs, demonstrates it can identify organs and abnormalities in a zero-shot manner using natural languages.
arXiv Detail & Related papers (2024-04-23T17:59:01Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
This paper introduces a novel lightweight multi-level adaptation and comparison framework to repurpose the CLIP model for medical anomaly detection.
Our approach integrates multiple residual adapters into the pre-trained visual encoder, enabling a stepwise enhancement of visual features across different levels.
Our experiments on medical anomaly detection benchmarks demonstrate that our method significantly surpasses current state-of-the-art models.
arXiv Detail & Related papers (2024-03-19T09:28:19Z) - Mining Gaze for Contrastive Learning toward Computer-Assisted Diagnosis [61.089776864520594]
We propose eye-tracking as an alternative to text reports for medical images.
By tracking the gaze of radiologists as they read and diagnose medical images, we can understand their visual attention and clinical reasoning.
We introduce the Medical contrastive Gaze Image Pre-training (McGIP) as a plug-and-play module for contrastive learning frameworks.
arXiv Detail & Related papers (2023-12-11T02:27:45Z) - A hybrid approach for improving U-Net variants in medical image
segmentation [0.0]
The technique of splitting a medical image into various segments or regions of interest is known as medical image segmentation.
The segmented images that are produced can be used for many different things, including diagnosis, surgery planning, and therapy evaluation.
This research aims to reduce the network parameter requirements using depthwise separable convolutions.
arXiv Detail & Related papers (2023-07-31T07:43:45Z) - Single-Image-Based Deep Learning for Segmentation of Early Esophageal
Cancer Lesions [36.60419108411669]
We present a novel deep learning approach for segmenting EEC lesions.
It relies solely on a single image coming from one patient, forming the so-called "You-Only-Have-One" framework.
We have evaluated YOHO over an EEC data-set created by ourselves and achieved a mean Dice score of 0.888.
arXiv Detail & Related papers (2023-06-09T14:06:26Z) - Few-shot image segmentation for cross-institution male pelvic organs
using registration-assisted prototypical learning [13.567073992605797]
This work presents the first 3D few-shot interclass segmentation network for medical images.
It uses a labelled multi-institution dataset from prostate cancer patients with eight regions of interest.
A built-in registration mechanism can effectively utilise the prior knowledge of consistent anatomy between subjects.
arXiv Detail & Related papers (2022-01-17T11:44:10Z) - MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from
Medical Images Using Deep Learning [15.01235930304888]
We propose a novel deep learning-based interactive segmentation method that has high efficiency due to only requiring clicks as user inputs.
Our proposed framework achieves accurate results with fewer user interactions and less time compared with state-of-the-art interactive frameworks.
arXiv Detail & Related papers (2021-04-25T14:15:17Z) - Cross-Modal Information Maximization for Medical Imaging: CMIM [62.28852442561818]
In hospitals, data are siloed to specific information systems that make the same information available under different modalities.
This offers unique opportunities to obtain and use at train-time those multiple views of the same information that might not always be available at test-time.
We propose an innovative framework that makes the most of available data by learning good representations of a multi-modal input that are resilient to modality dropping at test-time.
arXiv Detail & Related papers (2020-10-20T20:05:35Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z) - Robust Medical Instrument Segmentation Challenge 2019 [56.148440125599905]
Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions.
Our challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures.
The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap.
arXiv Detail & Related papers (2020-03-23T14:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.