Extendibility limits the performance of quantum processors
- URL: http://arxiv.org/abs/2108.03137v1
- Date: Fri, 6 Aug 2021 14:17:08 GMT
- Title: Extendibility limits the performance of quantum processors
- Authors: Eneet Kaur, Siddhartha Das, Mark M. Wilde, and Andreas Winter
- Abstract summary: We introduce the resource theory of unextendibility, which is associated with the inability of extending quantum entanglement in a given quantum state to multiple parties.
We derive non-asymptotic, upper bounds on the rate at which quantum communication or entanglement preservation is possible by utilizing an arbitrary quantum channel a finite number of times.
We show that the bounds obtained are significantly tighter than previously known bounds for quantum communication over both the depolarizing and erasure channels.
- Score: 5.949779668853555
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Resource theories in quantum information science are helpful for the study
and quantification of the performance of information-processing tasks that
involve quantum systems. These resource theories also find applications in
other areas of study; e.g., the resource theories of entanglement and coherence
have found use and implications in the study of quantum thermodynamics and
memory effects in quantum dynamics. In this paper, we introduce the resource
theory of unextendibility, which is associated to the inability of extending
quantum entanglement in a given quantum state to multiple parties. The free
states in this resource theory are the k-extendible states, and the free
channels are k-extendible channels, which preserve the class of k-extendible
states. We make use of this resource theory to derive non-asymptotic, upper
bounds on the rate at which quantum communication or entanglement preservation
is possible by utilizing an arbitrary quantum channel a finite number of times,
along with the assistance of k-extendible channels at no cost. We then show
that the bounds obtained are significantly tighter than previously known bounds
for quantum communication over both the depolarizing and erasure channels.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Coherence-mixedness trade-offs [2.4940844507983875]
We show that quantum coherence is severely restricted by environmental noise in general quantum processing.
We derive basis-independent constraints on the attainable quantum coherence imposed by the mixedness of a quantum state.
arXiv Detail & Related papers (2024-05-23T09:07:46Z) - Separable Power of Classical and Quantum Learning Protocols Through the Lens of No-Free-Lunch Theorem [70.42372213666553]
The No-Free-Lunch (NFL) theorem quantifies problem- and data-independent generalization errors regardless of the optimization process.
We categorize a diverse array of quantum learning algorithms into three learning protocols designed for learning quantum dynamics under a specified observable.
Our derived NFL theorems demonstrate quadratic reductions in sample complexity across CLC-LPs, ReQu-LPs, and Qu-LPs.
We attribute this performance discrepancy to the unique capacity of quantum-related learning protocols to indirectly utilize information concerning the global phases of non-orthogonal quantum states.
arXiv Detail & Related papers (2024-05-12T09:05:13Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A Compendious Review of Majorization-Based Resource Theories: Quantum
Information and Quantum Thermodynamics [0.0]
We aim to augment our comprehension of genuine quantum phenomena manifested across diverse technological applications.
We emphasize the underlying similarities shared by various resources, including bipartite quantum entanglement, quantum coherence, and superposition.
arXiv Detail & Related papers (2023-06-20T13:02:52Z) - Estimate distillable entanglement and quantum capacity by squeezing useless entanglement [5.086696108576776]
Quantum Internet relies on quantum entanglement as a fundamental resource for secure and efficient quantum communication.
It remains challenging to accurately estimate the distillable entanglement and its closely related essential quantity, the quantum capacity.
We propose efficiently computable upper bounds for both quantities based on the idea that the useless entanglement within a state or a quantum channel does not contribute to the distillable entanglement or the quantum capacity.
arXiv Detail & Related papers (2023-03-13T16:02:18Z) - Intrinsic relationships of Quantum Resource Theories and their roles in
Quantum Metrology [0.0]
We focus on the resource theories of entanglement, discord-like quantum correlations, and quantum coherence.
This thesis includes also the contributions on the dynamics of these quantum resources in various models of open quantum systems.
arXiv Detail & Related papers (2022-11-15T08:21:55Z) - The power of noisy quantum states and the advantage of resource dilution [62.997667081978825]
Entanglement distillation allows to convert noisy quantum states into singlets.
We show that entanglement dilution can increase the resilience of shared quantum states to local noise.
arXiv Detail & Related papers (2022-10-25T17:39:29Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - An introductory review on resource theories of generalized nonclassical
light [0.0]
Quantum resource theory is perhaps the most revolutionary framework that quantum physics has ever experienced.
Generalized quantum optical framework strives to bring in several prosperous contemporary ideas.
arXiv Detail & Related papers (2021-03-23T05:10:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.