Analysis of Driving Scenario Trajectories with Active Learning
- URL: http://arxiv.org/abs/2108.03217v1
- Date: Fri, 6 Aug 2021 17:41:40 GMT
- Title: Analysis of Driving Scenario Trajectories with Active Learning
- Authors: Sanna Jarl and Sadegh Rahrovani and Morteza Haghir Chehreghani
- Abstract summary: We develop an active learning framework to annotate driving trajectory time-series data.
We apply different active learning paradigms with different classification models to embedded data.
We demonstrate how it can be used to identify the out-of-class trajectories.
- Score: 6.316693022958221
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Annotating the driving scenario trajectories based only on explicit rules
(i.e., knowledge-based methods) can be subject to errors, such as false
positive/negative classification of scenarios that lie on the border of two
scenario classes, missing unknown scenario classes, and also anomalies. On the
other side, verifying the labels by the annotators is not cost-efficient. For
this purpose, active learning (AL) could potentially improve the annotation
procedure by inclusion of an annotator/expert in an efficient way. In this
study, we develop an active learning framework to annotate driving trajectory
time-series data. At the first step, we compute an embedding of the time-series
trajectories into a latent space in order to extract the temporal nature. For
this purpose, we study three different latent space representations:
multivariate Time Series t-Distributed Stochastic Neighbor Embedding (mTSNE),
Recurrent Auto-Encoder (RAE) and Variational Recurrent Auto-Encoder (VRAE). We
then apply different active learning paradigms with different classification
models to the embedded data. In particular, we study the two classifiers Neural
Network (NN) and Support Vector Machines (SVM), with three active learning
query strategies (i.e., entropy, margin and random). In the following, we
explore the possibilities of the framework to discover unknown classes and
demonstrate how it can be used to identify the out-of-class trajectories.
Related papers
- Trajectory Anomaly Detection with Language Models [21.401931052512595]
This paper presents a novel approach for trajectory anomaly detection using an autoregressive causal-attention model, termed LM-TAD.
By treating trajectories as sequences of tokens, our model learns the probability distributions over trajectories, enabling the identification of anomalous locations with high precision.
Our experiments demonstrate the effectiveness of LM-TAD on both synthetic and real-world datasets.
arXiv Detail & Related papers (2024-09-18T17:33:31Z) - Fast maneuver recovery from aerial observation: trajectory clustering and outliers rejection [43.06493292670652]
Two different types of Vulnerable Road Users (VRU) will be considered by the trajectory clustering methods proposed.
Two environments will serve as test for the methods develop, three different intersections and one roundabout.
arXiv Detail & Related papers (2024-07-03T07:22:21Z) - Deciphering Movement: Unified Trajectory Generation Model for Multi-Agent [53.637837706712794]
We propose a Unified Trajectory Generation model, UniTraj, that processes arbitrary trajectories as masked inputs.
Specifically, we introduce a Ghost Spatial Masking (GSM) module embedded within a Transformer encoder for spatial feature extraction.
We benchmark three practical sports game datasets, Basketball-U, Football-U, and Soccer-U, for evaluation.
arXiv Detail & Related papers (2024-05-27T22:15:23Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - A Spatiotemporal Correspondence Approach to Unsupervised LiDAR
Segmentation with Traffic Applications [16.260518238832887]
Key idea is to leverage the nature of a dynamic point cloud sequence and introduce drastically stronger scenarios.
We alternate between optimizing semantic into groups and clustering using point-wisetemporal labels.
Our method can learn discriminative features in an unsupervised learning fashion.
arXiv Detail & Related papers (2023-08-23T21:32:46Z) - Unsupervised 3D registration through optimization-guided cyclical
self-training [71.75057371518093]
State-of-the-art deep learning-based registration methods employ three different learning strategies.
We propose a novel self-supervised learning paradigm for unsupervised registration, relying on self-training.
We evaluate the method for abdomen and lung registration, consistently surpassing metric-based supervision and outperforming diverse state-of-the-art competitors.
arXiv Detail & Related papers (2023-06-29T14:54:10Z) - Multi-annotator Deep Learning: A Probabilistic Framework for
Classification [2.445702550853822]
Training standard deep neural networks leads to subpar performances in multi-annotator supervised learning settings.
We address this issue by presenting a probabilistic training framework named multi-annotator deep learning (MaDL)
A modular network architecture enables us to make varying assumptions regarding annotators' performances.
Our findings show MaDL's state-of-the-art performance and robustness against many correlated, spamming annotators.
arXiv Detail & Related papers (2023-04-05T16:00:42Z) - Unsupervised Driving Event Discovery Based on Vehicle CAN-data [62.997667081978825]
This work presents a simultaneous clustering and segmentation approach for vehicle CAN-data that identifies common driving events in an unsupervised manner.
We evaluate our approach with a dataset of real Tesla Model 3 vehicle CAN-data and a two-hour driving session that we annotated with different driving events.
arXiv Detail & Related papers (2023-01-12T13:10:47Z) - SSMTL++: Revisiting Self-Supervised Multi-Task Learning for Video
Anomaly Detection [108.57862846523858]
We revisit the self-supervised multi-task learning framework, proposing several updates to the original method.
We modernize the 3D convolutional backbone by introducing multi-head self-attention modules.
In our attempt to further improve the model, we study additional self-supervised learning tasks, such as predicting segmentation maps.
arXiv Detail & Related papers (2022-07-16T19:25:41Z) - Exploring Diversity-based Active Learning for 3D Object Detection in Autonomous Driving [45.405303803618]
We investigate diversity-based active learning (AL) as a potential solution to alleviate the annotation burden.
We propose a novel acquisition function that enforces spatial and temporal diversity in the selected samples.
We demonstrate the effectiveness of the proposed method on the nuScenes dataset and show that it outperforms existing AL strategies significantly.
arXiv Detail & Related papers (2022-05-16T14:21:30Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.