論文の概要: The Right to Talk: An Audio-Visual Transformer Approach
- arxiv url: http://arxiv.org/abs/2108.03256v1
- Date: Fri, 6 Aug 2021 18:04:24 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-10 15:33:58.850532
- Title: The Right to Talk: An Audio-Visual Transformer Approach
- Title(参考訳): 話す権利:オーディオ・ビジュアル・トランスフォーマーのアプローチ
- Authors: Thanh-Dat Truong, Chi Nhan Duong, The De Vu, Hoang Anh Pham, Bhiksha
Raj, Ngan Le, Khoa Luu
- Abstract要約: 本研究は,複数話者会話ビデオの音声および視覚チャネルにおける主話者のローカライゼーションと強調を行うために,新たなオーディオ・ビジュアル・トランスフォーマーアプローチを導入する。
我々の知る限りでは、マルチスピーカー会話ビデオにおいて、視覚と音声の両方で主話者を自動的にローカライズし、ハイライトすることができる最初の研究の1つである。
- 参考スコア(独自算出の注目度): 27.71444773878775
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Turn-taking has played an essential role in structuring the regulation of a
conversation. The task of identifying the main speaker (who is properly taking
his/her turn of speaking) and the interrupters (who are interrupting or
reacting to the main speaker's utterances) remains a challenging task. Although
some prior methods have partially addressed this task, there still remain some
limitations. Firstly, a direct association of Audio and Visual features may
limit the correlations to be extracted due to different modalities. Secondly,
the relationship across temporal segments helping to maintain the consistency
of localization, separation, and conversation contexts is not effectively
exploited. Finally, the interactions between speakers that usually contain the
tracking and anticipatory decisions about the transition to a new speaker are
usually ignored. Therefore, this work introduces a new Audio-Visual Transformer
approach to the problem of localization and highlighting the main speaker in
both audio and visual channels of a multi-speaker conversation video in the
wild. The proposed method exploits different types of correlations presented in
both visual and audio signals. The temporal audio-visual relationships across
spatial-temporal space are anticipated and optimized via the self-attention
mechanism in a Transformerstructure. Moreover, a newly collected dataset is
introduced for the main speaker detection. To the best of our knowledge, it is
one of the first studies that is able to automatically localize and highlight
the main speaker in both visual and audio channels in multi-speaker
conversation videos.
- Abstract(参考訳): ターンテイクは会話の規制の構造化において重要な役割を担ってきた。
主話者(適切に話し方を取っている)と割り込み者(主話者の発声を中断または反応している)を識別する作業は依然として難しい課題である。
以前の手法では部分的にこの問題に対処したものの、まだいくつかの制限が残っている。
第一に、音声と視覚の特徴の直接の関連は、異なるモダリティのために抽出される相関を制限する可能性がある。
第二に、時間セグメント間の関係は、局所化、分離、会話コンテキストの一貫性を維持するのに有効ではない。
最後に、通常追跡を含む話者間の相互作用と、新しい話者への移行に関する予測的決定は通常無視される。
そこで本研究では,マルチスピーカー対話ビデオの音声・映像チャネルにおける主話者の局所化と強調化の問題に対して,新たな音声・視覚トランスフォーマーを導入する。
提案手法は,視覚信号と音声信号の両方で表される様々な種類の相関関係を利用する。
トランスフォーマ構造における自己保持機構を用いて,空間空間間の時間的音声・視覚的関係を予測し,最適化する。
さらに、主話者検出のために新たに収集したデータセットも導入する。
我々の知る限りでは、マルチスピーカー会話ビデオにおいて、視覚と音声の両方で主話者を自動的にローカライズし、ハイライトすることができる最初の研究の1つである。
関連論文リスト
- Character-aware audio-visual subtitling in context [58.95580154761008]
本稿では,テレビ番組における文字認識型音声視覚サブタイピングのための改良されたフレームワークを提案する。
提案手法は,音声認識,話者ダイアリゼーション,文字認識を統合し,音声と視覚の両方を活用する。
提案手法を12テレビ番組のデータセット上で検証し,既存手法と比較して話者ダイアリゼーションと文字認識精度に優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-14T20:27:34Z) - Integrating Audio, Visual, and Semantic Information for Enhanced Multimodal Speaker Diarization [25.213694510527436]
既存の話者ダイアリゼーションシステムの多くは、単調な音響情報のみに依存している。
本稿では,音声,視覚,意味的手がかりを併用して話者ダイアリゼーションを向上する新しいマルチモーダル手法を提案する。
我々の手法は、最先端の話者ダイアリゼーション法より一貫して優れている。
論文 参考訳(メタデータ) (2024-08-22T03:34:03Z) - Qwen-Audio: Advancing Universal Audio Understanding via Unified
Large-Scale Audio-Language Models [98.34889301515412]
我々はQwen-Audioモデルを開発し、30以上のタスクと様々なオーディオタイプをカバーするために、事前学習を拡大することで制限に対処する。
Qwen-Audioは、タスク固有の微調整を必要とせずに、様々なベンチマークタスクで素晴らしいパフォーマンスを実現している。
さらにQwen-Audio-Chatを開発し、様々なオーディオやテキスト入力からの入力を可能にし、マルチターン対話を可能にし、様々なオーディオ中心のシナリオをサポートする。
論文 参考訳(メタデータ) (2023-11-14T05:34:50Z) - Improving Speaker Diarization using Semantic Information: Joint Pairwise
Constraints Propagation [53.01238689626378]
本稿では,話者ダイアリゼーションシステムにおける意味情報を活用する新しい手法を提案する。
音声言語理解モジュールを導入し、話者関連意味情報を抽出する。
本稿では,これらの制約を話者ダイアリゼーションパイプラインに統合する新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-09-19T09:13:30Z) - Egocentric Auditory Attention Localization in Conversations [25.736198724595486]
本稿では,エゴセントリックなビデオとマルチチャンネルオーディオを用いて,カメラ装着者の聴覚的注意のヒートマップを予測するエンド・ツー・エンドのディープラーニング手法を提案する。
提案手法では,シーンの特徴と全体的推論を利用して予測を行い,難易度の高い多話者会話データセット上でのベースラインのセットを上回ります。
論文 参考訳(メタデータ) (2023-03-28T14:52:03Z) - A Closer Look at Audio-Visual Multi-Person Speech Recognition and Active
Speaker Selection [9.914246432182873]
様々な雑音条件下では,エンド・ツー・エンドのモデルが,少なくとも大きな2段階のシステムを動作させることを示す。
トレーニングデータとして5万時間以上の公開YouTubeビデオを収録した実験では、アクティブな話者選択タスクにおいて、最初に注目層の精度を評価する。
論文 参考訳(メタデータ) (2022-05-11T15:55:31Z) - A Real-time Speaker Diarization System Based on Spatial Spectrum [14.189768987932364]
本稿では,話者ダイアリゼーションタスクにおける長年の課題に対処するための,新しい体系的アプローチを提案する。
まず, 指向性指向性マイクロホンアレイを用いたアプローチを用いて, 遠距離環境下でターゲット話者の声を捕捉する。
第2に,話者位置追跡のためのオンライン話者位置連成クラスタリング手法を提案する。
第3に、重複した音声を分離するメカニズムをトリガーするインスタント話者数検出器を開発する。
論文 参考訳(メタデータ) (2021-07-20T08:25:23Z) - Streaming Multi-talker Speech Recognition with Joint Speaker
Identification [77.46617674133556]
SURITは、音声認識と話者識別の両方のバックボーンとして、リカレントニューラルネットワークトランスデューサ(RNN-T)を採用しています。
Librispeechから派生したマルチストーカーデータセットであるLibrispeechデータセットに関するアイデアを検証し、奨励的な結果を提示した。
論文 参考訳(メタデータ) (2021-04-05T18:37:33Z) - A Review of Speaker Diarization: Recent Advances with Deep Learning [78.20151731627958]
スピーカーダイアリゼーションは、スピーカーのアイデンティティに対応するクラスでオーディオまたはビデオ録画をラベル付けするタスクです。
ディープラーニング技術の台頭に伴い、話者ダイアリゼーションのためのさらなる急速な進歩がなされている。
話者ダイアリゼーションシステムが音声認識アプリケーションとどのように統合されているかについて議論する。
論文 参考訳(メタデータ) (2021-01-24T01:28:05Z) - FragmentVC: Any-to-Any Voice Conversion by End-to-End Extracting and
Fusing Fine-Grained Voice Fragments With Attention [66.77490220410249]
本稿では、Wav2Vec 2.0から、音源話者からの発声の潜在音声構造を求めるFragmentVCを提案する。
FragmentVCは、ターゲット話者発話からきめ細かい音声断片を抽出し、所望の発話に融合することができる。
提案手法は, コンテンツと話者情報との絡み合いを考慮せずに, 再構成損失を学習する。
論文 参考訳(メタデータ) (2020-10-27T09:21:03Z) - End-to-End Neural Diarization: Reformulating Speaker Diarization as
Simple Multi-label Classification [45.38809571153867]
本稿では,ニューラルネットワークが直接話者ダイアリゼーション結果を出力するエンド・ツー・エンド・ニューラルダイアリゼーション(EEND)を提案する。
話者セグメントラベルとマルチスピーカ記録を連携させることにより,本モデルは実際の会話に容易に適応できる。
論文 参考訳(メタデータ) (2020-02-24T14:53:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。