論文の概要: Deep Learning Based Antenna-time Domain Channel Extrapolation for Hybrid
mmWave Massive MIMO
- arxiv url: http://arxiv.org/abs/2108.03941v1
- Date: Mon, 9 Aug 2021 11:12:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-10 21:42:52.984591
- Title: Deep Learning Based Antenna-time Domain Channel Extrapolation for Hybrid
mmWave Massive MIMO
- Title(参考訳): 深層学習に基づくハイブリッドMIMOのためのアンテナ時間領域チャネル外挿法
- Authors: Shunbo Zhang, Shun Zhang, Jianpeng Ma, Tian Liu, and Octavia A. Dobre
- Abstract要約: 本研究では,部分的なアップリンクチャネルから基地局の全ダウンリンクチャネルへのマッピング関数を学習するために,潜在常微分方程式(ODE)に基づくネットワークを設計する。
シミュレーションの結果,設計したネットワークは,部分的なアップリンクチャネルから全ダウンリンクチャネルを効率的に推測できることがわかった。
- 参考スコア(独自算出の注目度): 30.201881862681972
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In a time-varying massive multiple-input multipleoutput (MIMO) system, the
acquisition of the downlink channel state information at the base station (BS)
is a very challenging task due to the prohibitively high overheads associated
with downlink training and uplink feedback. In this paper, we consider the
hybrid precoding structure at BS and examine the antennatime domain channel
extrapolation. We design a latent ordinary differential equation (ODE)-based
network under the variational auto-encoder (VAE) framework to learn the mapping
function from the partial uplink channels to the full downlink ones at the BS
side. Specifically, the gated recurrent unit is adopted for the encoder and the
fully-connected neural network is used for the decoder. The end-to-end learning
is utilized to optimize the network parameters. Simulation results show that
the designed network can efficiently infer the full downlink channels from the
partial uplink ones, which can significantly reduce the channel training
overhead.
- Abstract(参考訳): 時変多重入力多重出力(mimo)システムにおいて、基地局(bs)におけるダウンリンクチャネル状態情報の取得は、ダウンリンクトレーニングやアップリンクフィードバックに伴うオーバーヘッドが極めて高いため、非常に困難な課題である。
本稿では,bsにおけるハイブリッドプリコーディング構造を考察し,アンテナ時間領域チャネル外挿について検討する。
我々は,変分オートエンコーダ(vae)フレームワークの下で潜在常微分方程式(ode)ベースのネットワークを設計し,部分的アップリンクチャネルからbs側の全ダウンリンクチャネルへのマッピング関数を学習する。
具体的には、エンコーダにはゲートリカレントユニットが採用され、デコーダには完全接続ニューラルネットワークが使用される。
エンドツーエンド学習は、ネットワークパラメータの最適化に利用される。
シミュレーションの結果,設計したネットワークは,部分的なアップリンクチャネルから,全ダウンリンクチャネルを効率的に推定でき,チャネルトレーニングのオーバーヘッドを大幅に削減できることがわかった。
関連論文リスト
- Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - Deep Generative Models for Downlink Channel Estimation in FDD Massive
MIMO Systems [13.267048706241157]
この課題に対処するために, 深部生成モデル(DGM)に基づく手法を提案する。
アップリンクチャネルとダウンリンクチャネルの部分的相互性を実行し、まず、周波数非依存のチャネルパラメータを推定する。
次に、各伝搬路の位相である周波数固有チャネルパラメータをダウンリンクトレーニングにより推定する。
論文 参考訳(メタデータ) (2022-03-09T18:32:10Z) - DeepTx: Deep Learning Beamforming with Channel Prediction [8.739166282613118]
本研究では,送信機の機械学習アルゴリズムに着目した。
ビームフォーミングを考慮し、所定のアップリンクチャネル推定を入力として、ビームフォーミングに使用するダウンリンクチャネル情報を出力するCNNを提案する。
ニューラルネットワークの主なタスクは、アップリンクとダウンリンクスロットの間のチャネル進化を予測することだが、チェーン全体の非効率性とエラーを処理することも学べる。
論文 参考訳(メタデータ) (2022-02-16T11:19:54Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
そこでは,観測観測のために,既知の基地局とRIS位相制御行列を併用したアップリンクチャネル推定手法を提案する。
推定性能を向上し, トレーニングオーバーヘッドを低減するため, 深部展開法において, mmWaveチャネルの固有チャネル幅を生かした。
提案したディープ・アンフォールディング・ネットワーク・アーキテクチャは,トレーニングオーバーヘッドが比較的小さく,オンライン計算の複雑さも比較的小さく,最小二乗法(LS)法より優れていることが確認された。
論文 参考訳(メタデータ) (2021-07-27T06:57:56Z) - End-to-End Learning for Uplink MU-SIMO Joint Transmitter and
Non-Coherent Receiver Design in Fading Channels [11.182920270301304]
JTRD-Netと呼ばれる新しいエンドツーエンド学習手法が提案され、マルチユーザシングルインプットマルチ出力(MU-SIMO)ジョイントトランスミッタとフェーディングチャネルにおける非コヒーレントレシーバー設計(JTRD)をアップリンクする。
送信側は、マルチユーザー波形設計を担当する並列線形層のグループとしてモデル化されています。
非コヒーレント受信機は、マルチユーザ検出(MUD)機能を提供するために、ディープフィードフォワードニューラルネットワーク(DFNN)によって形成される。
論文 参考訳(メタデータ) (2021-05-04T02:47:59Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
本稿では,ミリ波(mmWave)システムのモデル駆動深層学習(MDDL)に基づくチャネル推定とフィードバック方式を提案する。
無線周波数(RF)鎖の限られた数から高次元チャネルを推定するためのアップリンクパイロットオーバーヘッドを低減するために,位相シフトネットワークとチャネル推定器を自動エンコーダとして共同で訓練することを提案する。
MDDLに基づくチャネル推定とフィードバック方式は,最先端の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-04-22T13:34:53Z) - CAnet: Uplink-aided Downlink Channel Acquisition in FDD Massive MIMO
using Deep Learning [51.72869237847767]
周波数分割二重化システムでは、ダウンリンクチャネル状態情報(CSI)取得方式は高いトレーニングとフィードバックのオーバーヘッドをもたらす。
これらのオーバーヘッドを削減するためにディープラーニングを用いたアップリンク支援ダウンリンクチャネル獲得フレームワークを提案する。
論文 参考訳(メタデータ) (2021-01-12T10:12:28Z) - Deep Learning Based Antenna Selection for Channel Extrapolation in FDD
Massive MIMO [54.54508321463112]
大規模なマルチインプット多重出力(MIMO)システムでは、多数のアンテナが正確なチャネル状態情報を取得する上で大きな課題となる。
ニューラルネットワーク(NN)を用いて、アップリンクとダウンリンクチャネルデータセット間の固有の接続を捕捉し、アップリンクチャネル状態情報のサブセットからダウンリンクチャネルを外挿する。
アンテナサブセット選択問題について検討し、最高のチャネル外挿を実現し、NNのデータサイズを小さくする。
論文 参考訳(メタデータ) (2020-09-03T13:38:52Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
本稿では,mmWave IRSシステムに対するディープデノイングニューラルネットワークを用いた圧縮チャネル推定法を提案する。
我々はまず、受信チェーンをほとんど使わず、アップリンクのユーザ-IRSチャネルを推定するハイブリッド・パッシブ/アクティブIRSアーキテクチャを導入する。
完全チャネル行列は、圧縮センシングに基づいて限られた測定値から再構成することができる。
論文 参考訳(メタデータ) (2020-06-03T12:18:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。