論文の概要: DeepTx: Deep Learning Beamforming with Channel Prediction
- arxiv url: http://arxiv.org/abs/2202.07998v1
- Date: Wed, 16 Feb 2022 11:19:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-17 16:24:40.014643
- Title: DeepTx: Deep Learning Beamforming with Channel Prediction
- Title(参考訳): DeepTx: チャネル予測を備えたディープラーニングビームフォーミング
- Authors: Janne M.J. Huttunen, Dani Korpi, Mikko~Honkala
- Abstract要約: 本研究では,送信機の機械学習アルゴリズムに着目した。
ビームフォーミングを考慮し、所定のアップリンクチャネル推定を入力として、ビームフォーミングに使用するダウンリンクチャネル情報を出力するCNNを提案する。
ニューラルネットワークの主なタスクは、アップリンクとダウンリンクスロットの間のチャネル進化を予測することだが、チェーン全体の非効率性とエラーを処理することも学べる。
- 参考スコア(独自算出の注目度): 8.739166282613118
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning algorithms have recently been considered for many tasks in
the field of wireless communications. Previously, we have proposed the use of a
deep fully convolutional neural network (CNN) for receiver processing and shown
it to provide considerable performance gains. In this study, we focus on
machine learning algorithms for the transmitter. In particular, we consider
beamforming and propose a CNN which, for a given uplink channel estimate as
input, outputs downlink channel information to be used for beamforming. The CNN
is trained in a supervised manner considering both uplink and downlink
transmissions with a loss function that is based on UE receiver performance.
The main task of the neural network is to predict the channel evolution between
uplink and downlink slots, but it can also learn to handle inefficiencies and
errors in the whole chain, including the actual beamforming phase. The provided
numerical experiments demonstrate the improved beamforming performance.
- Abstract(参考訳): 近年,無線通信分野における多くの課題に対して機械学習アルゴリズムが検討されている。
これまで我々は、受信処理に深い完全畳み込みニューラルネットワーク(cnn)を使うことを提案し、かなりの性能向上をもたらすことを示した。
本研究では,送信機の機械学習アルゴリズムに着目した。
特に,ビームフォーミングについて検討し,所定のアップリンクチャネル推定を入力として,ビームフォーミングに使用するダウンリンクチャネル情報を出力するcnnを提案する。
cnnは、ue受信機の性能に基づく損失関数を持つアップリンクとダウンリンクの両方の送信を考慮した教師付き方法で訓練される。
ニューラルネットワークの主なタスクは、アップリンクとダウンリンクスロットの間のチャネルの進化を予測することだが、実際のビームフォーミングフェーズを含むチェーン全体の非効率性とエラーを処理することも学べる。
提案した数値実験によりビームフォーミング性能が向上した。
関連論文リスト
- Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
本稿では,CSI行列内の固有周波数領域相関を明らかにするエンコーダデコーダに基づくネットワークを提案する。
エンコーダ・デコーダネットワーク全体がチャネル圧縮に使用される。
提案手法は,共同作業における現状のチャネル推定およびフィードバック技術より優れる。
論文 参考訳(メタデータ) (2023-06-08T06:15:17Z) - An Efficient Machine Learning-based Channel Prediction Technique for
OFDM Sub-Bands [0.0]
我々はOFDMサブバンドにおけるチャネル予測のための効率的な機械学習(ML)に基づく手法を提案する。
提案手法の新規性は、選択的なフェーディングにおける将来のチャネル挙動を推定するために使用されるチャネルフェーディングサンプルのトレーニングにある。
論文 参考訳(メタデータ) (2023-05-31T09:41:27Z) - Channelformer: Attention based Neural Solution for Wireless Channel
Estimation and Effective Online Training [1.0499453838486013]
本稿では,改良されたチャネル推定を実現するために,エンコーダ・デコーダニューラルアーキテクチャ(Channelformer)を提案する。
我々は,復号器として,エンコーダと残差畳み込みニューラルアーキテクチャに多面的注意を払っている。
また,現代通信システムにおける第5世代(5G)新しい無線(NR)構成に基づく効果的なオンライントレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-02-08T23:18:23Z) - Age of Information in Deep Learning-Driven Task-Oriented Communications [78.84264189471936]
本稿では,その送信機におけるデータを利用した受信機におけるタスク実行を目的とした,タスク指向コミュニケーションにおける年齢概念について検討する。
送信機-受信機操作は、共同で訓練されたディープニューラルネットワーク(DNN)のエンコーダ-デコーダペアとしてモデル化される。
論文 参考訳(メタデータ) (2023-01-11T04:15:51Z) - Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid
Precoding [94.40747235081466]
本研究では,ミリ波(mmWave)大規模マルチインプット多重出力(MIMO)システムのためのエンドツーエンドの深層学習に基づくジョイントトランスシーバ設計アルゴリズムを提案する。
我々は受信したパイロットを受信機でフィードバックビットにマッピングし、さらに送信機でハイブリッドプリコーダにフィードバックビットをマッピングするDNNアーキテクチャを開発した。
論文 参考訳(メタデータ) (2021-10-22T20:49:02Z) - Deep Learning Based Antenna-time Domain Channel Extrapolation for Hybrid
mmWave Massive MIMO [30.201881862681972]
本研究では,部分的なアップリンクチャネルから基地局の全ダウンリンクチャネルへのマッピング関数を学習するために,潜在常微分方程式(ODE)に基づくネットワークを設計する。
シミュレーションの結果,設計したネットワークは,部分的なアップリンクチャネルから全ダウンリンクチャネルを効率的に推測できることがわかった。
論文 参考訳(メタデータ) (2021-08-09T11:12:46Z) - Deep Learning Based Antenna Selection for Channel Extrapolation in FDD
Massive MIMO [54.54508321463112]
大規模なマルチインプット多重出力(MIMO)システムでは、多数のアンテナが正確なチャネル状態情報を取得する上で大きな課題となる。
ニューラルネットワーク(NN)を用いて、アップリンクとダウンリンクチャネルデータセット間の固有の接続を捕捉し、アップリンクチャネル状態情報のサブセットからダウンリンクチャネルを外挿する。
アンテナサブセット選択問題について検討し、最高のチャネル外挿を実現し、NNのデータサイズを小さくする。
論文 参考訳(メタデータ) (2020-09-03T13:38:52Z) - A Deep Learning Framework for Hybrid Beamforming Without Instantaneous
CSI Feedback [4.771833920251869]
本稿では,ハイブリッドビームフォーミングとチャネル推定の両方を扱うためのディープラーニング(DL)フレームワークを提案する。
提案手法は,従来の最適化手法に比べて,少なくとも10倍の計算複雑性を示す。
論文 参考訳(メタデータ) (2020-06-19T05:47:25Z) - Curriculum By Smoothing [52.08553521577014]
畳み込みニューラルネットワーク(CNN)は、画像分類、検出、セグメンテーションなどのコンピュータビジョンタスクにおいて顕著な性能を示している。
アンチエイリアスフィルタやローパスフィルタを用いてCNNの機能埋め込みを円滑化するエレガントなカリキュラムベースのスキームを提案する。
トレーニング中に特徴マップ内の情報量が増加するにつれて、ネットワークはデータのより優れた表現を徐々に学習することができる。
論文 参考訳(メタデータ) (2020-03-03T07:27:44Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
本稿では,アップリンク無線通信システムにおけるチャネル割り当て問題について検討する。
我々の目標は、整数チャネル割り当て制約を受ける全ユーザの総和率を最大化することです。
計算複雑性が高いため、機械学習アプローチは計算効率のよい解を得るために用いられる。
論文 参考訳(メタデータ) (2020-01-12T15:54:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。