A Framework for Joint Unsupervised Learning of Cluster-Aware Embedding
for Heterogeneous Networks
- URL: http://arxiv.org/abs/2108.03953v1
- Date: Mon, 9 Aug 2021 11:36:36 GMT
- Title: A Framework for Joint Unsupervised Learning of Cluster-Aware Embedding
for Heterogeneous Networks
- Authors: Rayyan Ahmad Khan, Martin Kleinsteuber
- Abstract summary: Heterogeneous Information Network (HIN) embedding refers to the low-dimensional projections of the HIN nodes that preserve the HIN structure and semantics.
We propose ours for joint learning of cluster embeddings as well as cluster-aware HIN embedding.
- Score: 6.900303913555705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heterogeneous Information Network (HIN) embedding refers to the
low-dimensional projections of the HIN nodes that preserve the HIN structure
and semantics. HIN embedding has emerged as a promising research field for
network analysis as it enables downstream tasks such as clustering and node
classification. In this work, we propose \ours for joint learning of cluster
embeddings as well as cluster-aware HIN embedding. We assume that the connected
nodes are highly likely to fall in the same cluster, and adopt a variational
approach to preserve the information in the pairwise relations in a
cluster-aware manner. In addition, we deploy contrastive modules to
simultaneously utilize the information in multiple meta-paths, thereby
alleviating the meta-path selection problem - a challenge faced by many of the
famous HIN embedding approaches. The HIN embedding, thus learned, not only
improves the clustering performance but also preserves pairwise proximity as
well as the high-order HIN structure. We show the effectiveness of our approach
by comparing it with many competitive baselines on three real-world datasets on
clustering and downstream node classification.
Related papers
- Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - Deep Embedded Clustering with Distribution Consistency Preservation for
Attributed Networks [15.895606627146291]
In this study, we propose an end-to-end deep embedded clustering model for attributed networks.
It utilizes graph autoencoder and node attribute autoencoder to respectively learn node representations and cluster assignments.
The proposed model achieves significantly better or competitive performance compared with the state-of-the-art methods.
arXiv Detail & Related papers (2022-05-28T02:35:34Z) - Self-supervised Contrastive Attributed Graph Clustering [110.52694943592974]
We propose a novel attributed graph clustering network, namely Self-supervised Contrastive Attributed Graph Clustering (SCAGC)
In SCAGC, by leveraging inaccurate clustering labels, a self-supervised contrastive loss, are designed for node representation learning.
For the OOS nodes, SCAGC can directly calculate their clustering labels.
arXiv Detail & Related papers (2021-10-15T03:25:28Z) - Attention-driven Graph Clustering Network [49.040136530379094]
We propose a novel deep clustering method named Attention-driven Graph Clustering Network (AGCN)
AGCN exploits a heterogeneous-wise fusion module to dynamically fuse the node attribute feature and the topological graph feature.
AGCN can jointly perform feature learning and cluster assignment in an unsupervised fashion.
arXiv Detail & Related papers (2021-08-12T02:30:38Z) - Learning Hierarchical Graph Neural Networks for Image Clustering [81.5841862489509]
We propose a hierarchical graph neural network (GNN) model that learns how to cluster a set of images into an unknown number of identities.
Our hierarchical GNN uses a novel approach to merge connected components predicted at each level of the hierarchy to form a new graph at the next level.
arXiv Detail & Related papers (2021-07-03T01:28:42Z) - Variational Co-embedding Learning for Attributed Network Clustering [30.7006907516984]
Recent works for attributed network clustering utilize graph convolution to obtain node embeddings and simultaneously perform clustering assignments on the embedding space.
We propose a variational co-embedding learning model for attributed network clustering (ANC)
ANC is composed of dual variational auto-encoders to simultaneously embed nodes and attributes.
arXiv Detail & Related papers (2021-04-15T08:11:47Z) - CaEGCN: Cross-Attention Fusion based Enhanced Graph Convolutional
Network for Clustering [51.62959830761789]
We propose a cross-attention based deep clustering framework, named Cross-Attention Fusion based Enhanced Graph Convolutional Network (CaEGCN)
CaEGCN contains four main modules: cross-attention fusion, Content Auto-encoder, Graph Convolutional Auto-encoder and self-supervised model.
Experimental results on different types of datasets prove the superiority and robustness of the proposed CaEGCN.
arXiv Detail & Related papers (2021-01-18T05:21:59Z) - Deep Fusion Clustering Network [38.540761683389135]
We propose a Deep Fusion Clustering Network (DFCN) for deep clustering.
In our network, an interdependency learning-based Structure and Attribute Information Fusion (SAIF) module is proposed to explicitly merge the representations learned by an autoencoder and a graph autoencoder.
Experiments on six benchmark datasets have demonstrated that the proposed DFCN consistently outperforms the state-of-the-art deep clustering methods.
arXiv Detail & Related papers (2020-12-15T09:37:59Z) - Joint Optimization of an Autoencoder for Clustering and Embedding [22.16059261437617]
We present an alternative where the autoencoder and the clustering are learned simultaneously.
That simple neural network, referred to as the clustering module, can be integrated into a deep autoencoder resulting in a deep clustering model.
arXiv Detail & Related papers (2020-12-07T14:38:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.