Decentralized Deep Learning for Mobile Edge Computing: A Survey on
Communication Efficiency and Trustworthiness
- URL: http://arxiv.org/abs/2108.03980v1
- Date: Fri, 30 Jul 2021 04:15:36 GMT
- Title: Decentralized Deep Learning for Mobile Edge Computing: A Survey on
Communication Efficiency and Trustworthiness
- Authors: Yuwei Sun, Hideya Ochiai, Hiroshi Esaki
- Abstract summary: Decentralized deep learning (DDL) is a promising solution to privacy-preserving data processing for millions of edge smart devices.
In this paper, we demonstrate technical fundamentals of DDL for benefiting many walks of society through decentralized learning.
- Score: 1.4180331276028662
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A wider coverage and a better solution to latency reduction in 5G
necessitates its combination with mobile edge computing (MEC) technology.
Decentralized deep learning (DDL) as a promising solution to privacy-preserving
data processing for millions of edge smart devices, it leverages federated
learning within the networking of local models, without disclosing a client's
raw data. Especially, in industries such as finance and healthcare where
sensitive data of transactions and personal medical records is cautiously
maintained, DDL facilitates the collaboration among these institutes to improve
the performance of local models, while protecting data privacy of participating
clients. In this survey paper, we demonstrate technical fundamentals of DDL for
benefiting many walks of society through decentralized learning. Furthermore,
we offer a comprehensive overview of recent challenges of DDL and the most
relevant solutions from novel perspectives of communication efficiency and
trustworthiness.
Related papers
- Lancelot: Towards Efficient and Privacy-Preserving Byzantine-Robust Federated Learning within Fully Homomorphic Encryption [10.685816010576918]
We propose Lancelot, an innovative and computationally efficient BRFL framework that employs fully homomorphic encryption (FHE) to safeguard against malicious client activities while preserving data privacy.
Our extensive testing, which includes medical imaging diagnostics and widely-used public image datasets, demonstrates that Lancelot significantly outperforms existing methods, offering more than a twenty-fold increase in processing speed, all while maintaining data privacy.
arXiv Detail & Related papers (2024-08-12T14:48:25Z) - Privacy-Preserving Edge Federated Learning for Intelligent Mobile-Health Systems [4.082799056366928]
We propose a privacy-preserving edge FL framework for resource-constrained mobile-health and wearable technologies over the IoT infrastructure.
We evaluate our proposed framework extensively and provide the implementation of our technique on Amazon's AWS cloud platform.
arXiv Detail & Related papers (2024-05-09T08:15:31Z) - Decentralized Multimedia Data Sharing in IoV: A Learning-based Equilibrium of Supply and Demand [57.82021900505197]
Internet of Vehicles (IoV) has great potential to transform transportation systems by enhancing road safety, reducing traffic congestion, and improving user experience through onboard infotainment applications.
Decentralized data sharing can improve security, privacy, reliability, and facilitate infotainment data sharing in IoVs.
We propose a decentralized data-sharing incentive mechanism based on multi-intelligent reinforcement learning to learn the supply-demand balance in markets.
arXiv Detail & Related papers (2024-03-29T14:58:28Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Blockchain-empowered Federated Learning for Healthcare Metaverses:
User-centric Incentive Mechanism with Optimal Data Freshness [66.3982155172418]
We first design a user-centric privacy-preserving framework based on decentralized Federated Learning (FL) for healthcare metaverses.
We then utilize Age of Information (AoI) as an effective data-freshness metric and propose an AoI-based contract theory model under Prospect Theory (PT) to motivate sensing data sharing.
arXiv Detail & Related papers (2023-07-29T12:54:03Z) - Privacy-Preserving Joint Edge Association and Power Optimization for the
Internet of Vehicles via Federated Multi-Agent Reinforcement Learning [74.53077322713548]
We investigate the privacy-preserving joint edge association and power allocation problem.
The proposed solution strikes a compelling trade-off, while preserving a higher privacy level than the state-of-the-art solutions.
arXiv Detail & Related papers (2023-01-26T10:09:23Z) - Does Decentralized Learning with Non-IID Unlabeled Data Benefit from
Self Supervision? [51.00034621304361]
We study decentralized learning with unlabeled data through the lens of self-supervised learning (SSL)
We study the effectiveness of contrastive learning algorithms under decentralized learning settings.
arXiv Detail & Related papers (2022-10-20T01:32:41Z) - Toward Smart Security Enhancement of Federated Learning Networks [109.20054130698797]
In this paper, we review the vulnerabilities of federated learning networks (FLNs) and give an overview of poisoning attacks.
We present a smart security enhancement framework for FLNs.
Deep reinforcement learning is applied to learn the behaving patterns of the edge devices (EDs) that can provide benign training results.
arXiv Detail & Related papers (2020-08-19T08:46:39Z) - A Review of Privacy-preserving Federated Learning for the
Internet-of-Things [3.3517146652431378]
This work reviews federated learning as an approach for performing machine learning on distributed data.
We aim to protect the privacy of user-generated data as well as reducing communication costs associated with data transfer.
We identify the strengths and weaknesses of different methods applied to federated learning.
arXiv Detail & Related papers (2020-04-24T15:27:23Z) - Evaluating the Communication Efficiency in Federated Learning Algorithms [3.713348568329249]
Recently, in light of new privacy legislations in many countries, the concept of Federated Learning (FL) has been introduced.
In FL, mobile users are empowered to learn a global model by aggregating their local models, without sharing the privacy-sensitive data.
This raises the challenge of communication cost when implementing FL at large scale.
arXiv Detail & Related papers (2020-04-06T15:31:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.