Distributed quantum phase sensing for arbitrary positive and negative
weights
- URL: http://arxiv.org/abs/2108.04119v4
- Date: Wed, 11 May 2022 01:32:51 GMT
- Title: Distributed quantum phase sensing for arbitrary positive and negative
weights
- Authors: Changhun Oh, Liang Jiang, and Changhyoup Lee
- Abstract summary: We propose an optimal distributed quantum phase sensing scheme using Gaussian states with zero displacement for an arbitrary distribution of the weights with positive and negative signs.
The estimation precision of the optimal scheme is derived, and shown to be achievable by using squeezed states injected into linear beam-splitter networks.
We also provide a deeper understanding of our finding by focusing on the two-mode case, in comparison with the cases using non-Gaussian probe states.
- Score: 2.5496329090462626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Estimation of a global parameter defined as a weighted linear combination of
unknown multiple parameters can be enhanced by using quantum resources.
Advantageous quantum strategies may vary depending on the weight distribution,
requiring the study of optimal schemes achieving a maximal quantum advantage
for a given sensing scenarios. In this work, we propose an optimal distributed
quantum phase sensing scheme using Gaussian states with zero displacement for
an arbitrary distribution of the weights with positive and negative signs. The
estimation precision of the optimal scheme is derived, and shown to be
achievable by using squeezed states injected into linear beam-splitter networks
and performing homodyne detection on them in the absence of loss.
Interestingly, the optimal scheme exploits entanglement of Gaussian states only
among the modes assigned with equal signs of the weights, but separates the
modes with opposite weight signs. We also provide a deeper understanding of our
finding by focusing on the two-mode case, in comparison with the cases using
non-Gaussian probe states. We expect this work to motivate further studies on
quantum-enhanced distributed sensing schemes considering various types of
physical parameters with an arbitrary weight distribution.
Related papers
- Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Finding the optimal probe state for multiparameter quantum metrology
using conic programming [61.98670278625053]
We present a conic programming framework that allows us to determine the optimal probe state for the corresponding precision bounds.
We also apply our theory to analyze the canonical field sensing problem using entangled quantum probe states.
arXiv Detail & Related papers (2024-01-11T12:47:29Z) - Gaussian boson sampling validation via detector binning [0.0]
We propose binned-detector probability distributions as a suitable quantity to statistically validate GBS experiments.
We show how to compute such distributions by leveraging their connection with their respective characteristic function.
We also illustrate how binned-detector probability distributions behave when Haar-averaged over all possible interferometric networks.
arXiv Detail & Related papers (2023-10-27T12:55:52Z) - Rate-Limited Quantum-to-Classical Optimal Transport in Finite and
Continuous-Variable Quantum Systems [11.152271223282463]
We consider the rate-limited quantum-to-classical optimal transport in terms of output-constrained rate-distortion coding.
We develop a coding framework for continuous-variable quantum systems by employing a clipping projection and a dequantization block.
For the Gaussian quantum systems, we derive an analytical solution for rate-limited Wasserstein distance of order 2.
arXiv Detail & Related papers (2023-05-17T07:16:20Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Optimal Scaling for Locally Balanced Proposals in Discrete Spaces [65.14092237705476]
We show that efficiency of Metropolis-Hastings (M-H) algorithms in discrete spaces can be characterized by an acceptance rate that is independent of the target distribution.
Knowledge of the optimal acceptance rate allows one to automatically tune the neighborhood size of a proposal distribution in a discrete space, directly analogous to step-size control in continuous spaces.
arXiv Detail & Related papers (2022-09-16T22:09:53Z) - Characterization of variational quantum algorithms using free fermions [0.0]
We numerically study the interplay between these symmetries and the locality of the target state.
We find that the number of iterations to converge to the solution scales linearly with system size.
arXiv Detail & Related papers (2022-06-13T18:11:16Z) - Quantum probes for the characterization of nonlinear media [50.591267188664666]
We investigate how squeezed probes may improve individual and joint estimation of the nonlinear coupling $tildelambda$ and of the nonlinearity order $zeta$.
We conclude that quantum probes represent a resource to enhance precision in the characterization of nonlinear media, and foresee potential applications with current technology.
arXiv Detail & Related papers (2021-09-16T15:40:36Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Improving application performance with biased distributions of quantum
states [0.0]
We analyze mixtures of Haar-random pure states with Dirichlet-distributed coefficients.
We analytically derive the concentration parameters required to match the mean purity of the Bures and Hilbert--Schmidt distributions.
We demonstrate how substituting these Dirichlet-weighted Haar mixtures in place of the Bures and Hilbert--Schmidt distributions results in measurable performance advantages.
arXiv Detail & Related papers (2021-07-15T23:29:10Z) - An Ensemble Approach for Compressive Sensing with Quantum [1.8477401359673713]
We leverage the idea of a statistical ensemble to improve the quality of quantum annealing based binary compressive sensing.
Our experiments, on a D-Wave 2000Q quantum processor, demonstrated that the proposed ensemble scheme is notably less sensitive to the calibration of the penalty parameter.
arXiv Detail & Related papers (2020-06-08T15:32:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.