An Ensemble Approach for Compressive Sensing with Quantum
- URL: http://arxiv.org/abs/2006.04682v1
- Date: Mon, 8 Jun 2020 15:32:22 GMT
- Title: An Ensemble Approach for Compressive Sensing with Quantum
- Authors: Ramin Ayanzadeh, Milton Halem and Tim Finin
- Abstract summary: We leverage the idea of a statistical ensemble to improve the quality of quantum annealing based binary compressive sensing.
Our experiments, on a D-Wave 2000Q quantum processor, demonstrated that the proposed ensemble scheme is notably less sensitive to the calibration of the penalty parameter.
- Score: 1.8477401359673713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We leverage the idea of a statistical ensemble to improve the quality of
quantum annealing based binary compressive sensing. Since executing quantum
machine instructions on a quantum annealer can result in an excited state,
rather than the ground state of the given Hamiltonian, we use different penalty
parameters to generate multiple distinct quadratic unconstrained binary
optimization (QUBO) functions whose ground state(s) represent a potential
solution of the original problem. We then employ the attained samples from
minimizing all corresponding (different) QUBOs to estimate the solution of the
problem of binary compressive sensing. Our experiments, on a D-Wave 2000Q
quantum processor, demonstrated that the proposed ensemble scheme is notably
less sensitive to the calibration of the penalty parameter that controls the
trade-off between the feasibility and sparsity of recoveries.
Related papers
- Bias-field digitized counterdiabatic quantum optimization [39.58317527488534]
We call this protocol bias-field digitizeddiabatic quantum optimization (BF-DCQO)
Our purely quantum approach eliminates the dependency on classical variational quantum algorithms.
It achieves scaling improvements in ground state success probabilities, increasing by up to two orders of magnitude.
arXiv Detail & Related papers (2024-05-22T18:11:42Z) - Differentiable master equation solver for quantum device characterisation [0.0]
Differentiable models of physical systems provide a powerful platform for gradient-based algorithms.
Quantum systems present a particular challenge for such characterisation and control.
We present a versatile differentiable quantum master equation solver, and incorporate this solver into a framework for device characterisation.
arXiv Detail & Related papers (2024-03-07T17:23:56Z) - Quantum Semidefinite Programming with Thermal Pure Quantum States [0.5639904484784125]
We show that a quantization'' of the matrix multiplicative-weight algorithm can provide approximate solutions to SDPs quadratically faster than the best classical algorithms.
We propose a modification of this quantum algorithm and show that a similar speedup can be obtained by replacing the Gibbs-state sampler with the preparation of thermal pure quantum (TPQ) states.
arXiv Detail & Related papers (2023-10-11T18:00:53Z) - Randomized semi-quantum matrix processing [0.0]
We present a hybrid quantum-classical framework for simulating generic matrix functions.
The method is based on randomization over the Chebyshev approximation of the target function.
We prove advantages on average depths, including quadratic speed-ups on costly parameters.
arXiv Detail & Related papers (2023-07-21T18:00:28Z) - Tight One-Shot Analysis for Convex Splitting with Applications in
Quantum Information Theory [23.18400586573435]
We establish a one-shot error exponent and a one-shot strong converse for convex splitting with trace distance as an error criterion.
This leads to new one-shot exponent results in various tasks such as communication over quantum wiretap channels, secret key distillation, one-way quantum message compression, quantum measurement simulation, and quantum channel coding with side information at the transmitter.
arXiv Detail & Related papers (2023-04-24T12:47:37Z) - A Quantum Approach for Stochastic Constrained Binary Optimization [2.6803492658436032]
Quantum-based algorithms have been shown to generate high-quality solutions to hard problems.
This work puts forth quantum vectors to cope with binary quadratically constrained programs.
The method builds upon dual decomposition and entails solving a sequence of judiciously modified standard VQE tasks.
arXiv Detail & Related papers (2023-01-04T04:24:26Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Adiabatic quantum computing with parameterized quantum circuits [0.0]
We propose a discrete version of adiabatic quantum computing that can be implemented in a near-term device.
We compare our proposed algorithm with the Variational Quantum Eigensolver on two classical optimization problems.
arXiv Detail & Related papers (2022-06-09T09:31:57Z) - Q-FW: A Hybrid Classical-Quantum Frank-Wolfe for Quadratic Binary
Optimization [44.96576908957141]
We present a hybrid classical-quantum framework based on the Frank-Wolfe algorithm, Q-FW, for solving quadratic, linear iterations problems on quantum computers.
arXiv Detail & Related papers (2022-03-23T18:00:03Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates with Two Dark Paths in a Trapped Ion [41.36300605844117]
We show nonadiabatic holonomic single-qubit quantum gates on two dark paths in a trapped $171mathrmYb+$ ion based on four-level systems with resonant drives.
We find that nontrivial holonomic two-qubit quantum gates can also be realized within current experimental technologies.
arXiv Detail & Related papers (2021-01-19T06:57:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.