論文の概要: Harnessing Incremental Answer Set Solving for Reasoning in
Assumption-Based Argumentation
- arxiv url: http://arxiv.org/abs/2108.04192v1
- Date: Mon, 9 Aug 2021 17:34:05 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-10 15:09:08.135064
- Title: Harnessing Incremental Answer Set Solving for Reasoning in
Assumption-Based Argumentation
- Title(参考訳): 仮定に基づく推論のための高調波インクリメンタルアンサーセットの解法
- Authors: Tuomo Lehtonen, Johannes P. Wallner, Matti J\"arvisalo
- Abstract要約: 仮定に基づく議論(ABA)は、中心的な構造化された議論形式である。
近年のASPの進歩により、ABAのNPハード推論タスクを効率的に解けるようになった。
- 参考スコア(独自算出の注目度): 1.5469452301122177
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Assumption-based argumentation (ABA) is a central structured argumentation
formalism. As shown recently, answer set programming (ASP) enables efficiently
solving NP-hard reasoning tasks of ABA in practice, in particular in the
commonly studied logic programming fragment of ABA. In this work, we harness
recent advances in incremental ASP solving for developing effective algorithms
for reasoning tasks in the logic programming fragment of ABA that are
presumably hard for the second level of the polynomial hierarchy, including
skeptical reasoning under preferred semantics as well as preferential
reasoning. In particular, we develop non-trivial counterexample-guided
abstraction refinement procedures based on incremental ASP solving for these
tasks. We also show empirically that the procedures are significantly more
effective than previously proposed algorithms for the tasks.
This paper is under consideration for acceptance in TPLP.
- Abstract(参考訳): 仮定に基づく議論 (aba) は中央構造的議論形式論である。
最近述べたように、解集合プログラミング(ASP)は、ABAのNPハード推論タスクを、特にABAのよく研究されている論理プログラミングの断片において、効率的に解くことができる。
本研究では,ABA の論理プログラミングフラグメントにおけるタスクの推論に有効なアルゴリズムを開発するために,近年の ASP 問題解決の進歩を生かし,好意的意味論に基づく懐疑的推論や優先的推論など,多項式階層の第2段階において難しいと思われるタスクを推論するアルゴリズムの開発に活用する。
特に,これらのタスクに対するインクリメンタルなasp解法に基づいて,非自明な逆例による抽象的洗練手順を開発する。
また,提案手法が従来提案していたタスクのアルゴリズムよりもはるかに効果的であることを示す。
本論文はTPLPの受容について検討中である。
関連論文リスト
- Enhancing Multi-Step Reasoning Abilities of Language Models through Direct Q-Function Optimization [50.485788083202124]
強化学習(Reinforcement Learning, RL)は、大規模言語モデルを人間の好みと整合させ、複雑なタスクを遂行する能力を向上させる上で重要な役割を担っている。
反応生成過程をマルコフ決定プロセス(MDP)として定式化し,ソフトアクター・クリティック(SAC)フレームワークを用いて,言語モデルによって直接パラメータ化されたQ関数を最適化する,直接Q関数最適化(DQO)を提案する。
GSM8KとMATHという2つの数学問題解決データセットの実験結果から、DQOは従来の手法よりも優れており、言語モデルを整合させるための有望なオフライン強化学習手法として確立されている。
論文 参考訳(メタデータ) (2024-10-11T23:29:20Z) - Unlocking the Capabilities of Thought: A Reasoning Boundary Framework to Quantify and Optimize Chain-of-Thought [61.588465852846646]
大型言語モデル(LLM)の性能向上のための有望なアプローチとして、Chain-of-Thought(CoT)推論が登場した。
本稿では,これらの課題に対処するための新しい推論境界フレームワーク(RBF)を提案する。
論文 参考訳(メタデータ) (2024-10-08T05:26:28Z) - Learning Brave Assumption-Based Argumentation Frameworks via ASP [11.768331785549947]
ABA(Assumption-based Argumentation)は、非単調な推論のための統一的な形式主義として提唱されている。
本稿では,背景知識と肯定的/否定的な事例から学習を自動化する問題に焦点をあてる。
本稿では,変換規則に基づく新しいアルゴリズム(ロートラーニング,フォールディング,アクセプション導入,Fact Subsumptionなど)とその実装について述べる。
論文 参考訳(メタデータ) (2024-08-19T16:13:35Z) - Planning with OWL-DL Ontologies (Extended Version) [6.767885381740952]
フルパワー表現型DLをサポートするブラックボックスを提案する。
主要なアルゴリズムは、OWLによるPDDLへの計画仕様の書き直しに依存している。
いくつかのドメインからのベンチマークセットの実装を評価した。
論文 参考訳(メタデータ) (2024-08-14T13:27:02Z) - H-STAR: LLM-driven Hybrid SQL-Text Adaptive Reasoning on Tables [56.73919743039263]
本稿では,2段階のプロセスにシンボル的アプローチと意味的アプローチ(テキスト的アプローチ)を統合し,制約に対処する新しいアルゴリズムを提案する。
実験の結果,H-STARは3つの質問応答(QA)と事実検証データセットにおいて,最先端の手法を大幅に上回っていることがわかった。
論文 参考訳(メタデータ) (2024-06-29T21:24:19Z) - Instantiations and Computational Aspects of Non-Flat Assumption-based Argumentation [18.32141673219938]
非平坦なABAにおける推論のためのインスタンス化に基づくアプローチについて検討する。
非平坦なABAにおける推論のための2つのアルゴリズム的アプローチを提案する。
論文 参考訳(メタデータ) (2024-04-17T14:36:47Z) - Learning Planning-based Reasoning by Trajectories Collection and Process Reward Synthesizing [61.98556945939045]
収集された軌道上でのDPO(Direct Preference Optimization)を通して計画に基づく推論を学習するフレームワークを提案する。
論理的推論ベンチマークの挑戦的な結果から,学習フレームワークの有効性が示された。
論文 参考訳(メタデータ) (2024-02-01T15:18:33Z) - LaRS: Latent Reasoning Skills for Chain-of-Thought Reasoning [61.7853049843921]
Chain-of-Thoughting(CoT)プロンプトは、大規模言語モデル(LLM)のための一般的なコンテキスト内学習手法である。
本稿では、教師なし学習を用いて有理数の潜在空間表現を生成するLaRS(Lalatnt Reasoning Skills)という新しいアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-07T20:36:10Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
逐次決定問題は、予測状態表現(PSR)によってモデル化された低ランク構造が認められる場合、統計的に学習可能である
本稿では,推定モデルと実モデル間の全変動距離を上限とする新しいボーナス項を特徴とする,PSRに対する最初のUCB型アプローチを提案する。
PSRに対する既存のアプローチとは対照的に、UCB型アルゴリズムは計算的トラクタビリティ、最優先の準最適ポリシー、モデルの精度が保証される。
論文 参考訳(メタデータ) (2023-07-01T18:35:21Z) - Conflict-driven Inductive Logic Programming [3.29505746524162]
帰納的論理プログラミング(ILP)の目標は、一連の例を説明するプログラムを学ぶことである。
近年まで、ICPがターゲットとするPrologプログラムの研究がほとんどである。
ILASP システムは代わりに Answer Set Programs (ASP) を学ぶ
論文 参考訳(メタデータ) (2020-12-31T20:24:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。