論文の概要: Adding Visibility to Visibility Graphs: Weighting Visibility Analysis
with Attenuation Coefficients
- arxiv url: http://arxiv.org/abs/2108.04231v1
- Date: Wed, 28 Jul 2021 18:36:56 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-15 11:30:57.562159
- Title: Adding Visibility to Visibility Graphs: Weighting Visibility Analysis
with Attenuation Coefficients
- Title(参考訳): 可視性グラフへの可視性の追加:減衰係数を用いた重み付け可視性解析
- Authors: Mathew Schwartz, Margarita Vinnikov, John Federici
- Abstract要約: 本稿では,気象条件に基づいて可視性グラフを重み付けする新しい手法を提案する。
新しい因子は可視性グラフに統合され、サンプル環境に適用され、視線の直線を仮定することと視界の減少の間のばらつきを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Evaluating the built environment based on visibility has been long used as a
tool for human-centric design. The origins of isovists and visibility graphs
are within interior spaces, while more recently, these evaluation techniques
have been applied in the urban context. One of the key differentiators of an
outside environment is the weather, which has largely been ignored in the
design computation and space-syntax research areas. While a visibility graph is
a straightforward metric for determining connectivity between regions of space
through a line of sight calculation, this approach largely ignores the actual
visibility of one point to another. This paper introduces a new method for
weighting a visibility graph based on weather conditions (i.e. rain, fog,
snow). These new factors are integrated into visibility graphs and applied to
sample environments to demonstrate the variance between assuming a straight
line of sight and reduced visibility.
- Abstract(参考訳): 可視性に基づいて構築された環境を評価することは、人間中心の設計ツールとして長い間使われてきた。
イソビストの起源と可視性グラフは内部空間内にあるが、近年ではこれらの評価手法が都市の文脈に応用されている。
外部環境の重要な差別化要因の1つは天気であり、デザイン計算と宇宙・シンタックス研究領域では無視されてきた。
可視グラフは、視線計算によって空間の領域間の接続を決定するための単純な指標であるが、このアプローチは、ある点から別の点への実際の可視性を無視している。
本稿では,気象条件に基づいて可視性グラフを重み付けする新しい手法を提案する。
雨、霧、雪)。
これらの新しい因子は可視性グラフに統合され、サンプル環境に適用され、視線の直線と視界の減少の間のばらつきを示す。
関連論文リスト
- Bures-Wasserstein Means of Graphs [60.42414991820453]
本研究では,スムーズなグラフ信号分布の空間への埋め込みを通じて,グラフ平均を定義する新しいフレームワークを提案する。
この埋め込み空間において平均を求めることにより、構造情報を保存する平均グラフを復元することができる。
我々は,新しいグラフの意味の存在と特異性を確立し,それを計算するための反復アルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-05-31T11:04:53Z) - Visual Looming from Motion Field and Surface Normals [0.0]
織りは、伝統的に観測者の網膜における物体の相対的な拡張として定義され、脅威を認識するための基本的な視覚的キューであり、衝突のないナビゲーションを達成するために使用することができる。
局所表面に対する観測者の6自由度運動から生じる2次元運動場から、視覚的略奪を定量的に得るための新しい解を導出する。
本稿では,光流の空間微分から視覚的略奪を推定するための新しい手法を提案する。
論文 参考訳(メタデータ) (2022-10-08T21:36:49Z) - GraphCoCo: Graph Complementary Contrastive Learning [65.89743197355722]
グラフコントラスト学習(GCL)は、手作業によるアノテーションの監督なしに、グラフ表現学習(GRL)において有望な性能を示した。
本稿では,この課題に対処するため,グラフココというグラフ補完型コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-24T02:58:36Z) - DMRVisNet: Deep Multi-head Regression Network for Pixel-wise Visibility
Estimation Under Foggy Weather [0.0]
霧は、一般的な気象の一種として、特に山岳地帯において、現実世界に頻繁に現れる。
現在の方法では、道路上の固定位置に配置されたプロの楽器を使用して視界測定を行う。
可視性を推定するために、革新的なエンドツーエンドの畳み込みニューラルネットワークフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-08T13:31:07Z) - PANet: Perspective-Aware Network with Dynamic Receptive Fields and
Self-Distilling Supervision for Crowd Counting [63.84828478688975]
本稿では,視点問題に対処するため,PANetと呼ばれる新しい視点認識手法を提案する。
対象物のサイズが視点効果によって1つの画像で大きく変化するという観測に基づいて,動的受容場(DRF)フレームワークを提案する。
このフレームワークは、入力画像に応じて拡張畳み込みパラメータによって受容野を調整することができ、モデルが各局所領域についてより識別的な特徴を抽出するのに役立つ。
論文 参考訳(メタデータ) (2021-10-31T04:43:05Z) - NEAT: Neural Attention Fields for End-to-End Autonomous Driving [59.60483620730437]
本稿では、模倣学習モデルの効率的な推論を可能にする新しい表現であるNEAT(NEural Attention Field)を提案する。
NEATは、Bird's Eye View (BEV) シーン座標の位置をウェイポイントとセマンティクスにマッピングする連続関数である。
有害な環境条件や挑戦的なシナリオを含む新たな評価環境では、NEATはいくつかの強いベースラインを上回り、特権のあるCARLA専門家と同等の運転スコアを達成している。
論文 参考訳(メタデータ) (2021-09-09T17:55:28Z) - PureGaze: Purifying Gaze Feature for Generalizable Gaze Estimation [12.076469954457007]
未知対象領域のクロスドメイン視線推定における領域一般化問題に取り組む。
具体的には,視線特徴の浄化による領域一般化を実現する。
視線を浄化するためのプラグアンドプレイ自己対向フレームワークを設計します。
論文 参考訳(メタデータ) (2021-03-24T13:22:00Z) - Latent World Models For Intrinsically Motivated Exploration [140.21871701134626]
画像に基づく観察のための自己教師付き表現学習法を提案する。
我々は、部分的に観測可能な環境の探索を導くために、エピソードおよび寿命の不確実性を考慮する。
論文 参考訳(メタデータ) (2020-10-05T19:47:04Z) - Gaussian Process Gradient Maps for Loop-Closure Detection in
Unstructured Planetary Environments [17.276441789710574]
以前にマップされた位置を認識する能力は、自律システムにとって不可欠な機能である。
非構造的な惑星のような環境は、地形の類似性のためにこれらのシステムに大きな課題をもたらす。
本稿では,空間情報のみを用いたループ閉鎖問題の解法を提案する。
論文 参考訳(メタデータ) (2020-09-01T04:41:40Z) - Semantic Graph Based Place Recognition for 3D Point Clouds [22.608115489674653]
本稿では,位置認識のためのセマンティックグラフに基づく新しいアプローチを提案する。
まず、ポイントクラウドシーンのための新しいセマンティックグラフ表現を提案する。
次に、その類似性を計算するために、高速で効果的なグラフ類似性ネットワークを設計する。
論文 参考訳(メタデータ) (2020-08-26T09:27:26Z) - Neural Topological SLAM for Visual Navigation [112.73876869904]
意味論を生かし、近似幾何学的推論を行う空間のトポロジ的表現を設計する。
本稿では,ノイズのあるアクティベーションの下でそのような表現を構築し,維持し,使用することができる教師付き学習ベースアルゴリズムについて述べる。
論文 参考訳(メタデータ) (2020-05-25T17:56:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。