論文の概要: On Procedural Adversarial Noise Attack And Defense
- arxiv url: http://arxiv.org/abs/2108.04409v1
- Date: Tue, 10 Aug 2021 02:47:01 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-12 00:31:58.422991
- Title: On Procedural Adversarial Noise Attack And Defense
- Title(参考訳): 手続き的対向騒音攻撃と防御について
- Authors: Jun Yan and Xiaoyang Deng and Huilin Yin and Wancheng Ge
- Abstract要約: 逆の例では、ニューラルネットワークが入力画像に小さな修正を加えて予測エラーを発生させる。
本稿では,手続き型雑音関数に基づく2つのユニバーサル対向摂動(UAP)生成手法を提案する。
セマンティック表現を変更することなく、我々の手法によって生成された敵の例は攻撃に対して優れた性能を示す。
- 参考スコア(独自算出の注目度): 2.5388455804357952
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Neural Networks (DNNs) are vulnerable to adversarial examples which
would inveigle neural networks to make prediction errors with small per-
turbations on the input images. Researchers have been devoted to promoting the
research on the universal adversarial perturbations (UAPs) which are
gradient-free and have little prior knowledge on data distributions. Procedural
adversarial noise at- tack is a data-free universal perturbation generation
method. In this paper, we propose two universal adversarial perturbation (UAP)
generation methods based on procedural noise functions: Simplex noise and
Worley noise. In our framework, the shading which disturbs visual
classification is generated with rendering technology. Without changing the
semantic representations, the adversarial examples generated via our methods
show superior performance on the attack.
- Abstract(参考訳): ディープニューラルネットワーク(Deep Neural Networks, DNN)は、ニューラルネットワークが入力画像に小さな摂動で予測エラーを発生させる敵の例に対して脆弱である。
研究者は、勾配のないデータ分布に関する知識がほとんどない普遍的敵摂動(UAP)の研究を促進することに熱心である。
手続き型逆雑音at-tckはデータフリーな普遍摂動生成法である。
本稿では,手続き的雑音関数に基づく2つのユニバーサル対向摂動(UAP)生成手法を提案する。
本フレームワークでは,レンダリング技術によって視覚的分類を乱すシェーディングを生成する。
セマンティック表現を変更することなく、我々の手法によって生成された敵の例は攻撃に対して優れた性能を示す。
関連論文リスト
- Universal Adversarial Defense in Remote Sensing Based on Pre-trained Denoising Diffusion Models [17.283914361697818]
深部ニューラルネットワーク(DNN)は、地球観測のための多数のAIアプリケーション(AI4EO)において重要なソリューションとして注目されている。
本稿では、リモートセンシング画像(UAD-RS)における新しいユニバーサル・ディフェンス・アプローチを提案する。
論文 参考訳(メタデータ) (2023-07-31T17:21:23Z) - NoiseCAM: Explainable AI for the Boundary Between Noise and Adversarial
Attacks [21.86821880164293]
敵の攻撃は、簡単にニューラルネットワークを誤認し、間違った決定を導く。
本稿では,勾配クラスアクティベーションマップ(GradCAM)を用いて,VGG-16ネットワークの動作偏差を解析する。
また,グローバルおよび画素レベルの重み付けされたクラスアクティベーションマップからの情報を統合する新しいノイズCAMアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-09T22:07:41Z) - Guided Diffusion Model for Adversarial Purification [103.4596751105955]
敵攻撃は、様々なアルゴリズムやフレームワークでディープニューラルネットワーク(DNN)を妨害する。
本稿では,GDMP ( Guided diffusion model for purification) と呼ばれる新しい精製法を提案する。
様々なデータセットにわたる包括的実験において,提案したGDMPは,敵対的攻撃によって引き起こされた摂動を浅い範囲に減少させることを示した。
論文 参考訳(メタデータ) (2022-05-30T10:11:15Z) - Perlin Noise Improve Adversarial Robustness [9.084544535198509]
敵対的な例は、ディープニューラルネットワークの出力を摂動できる特別な入力である。
逆例を生成する方法の多くは勾配情報を必要とする。
手続き的雑音対向例は、新しい対向例生成方法である。
論文 参考訳(メタデータ) (2021-12-26T15:58:28Z) - Meta Adversarial Perturbations [66.43754467275967]
メタ逆境摂動(MAP)の存在を示す。
MAPは1段階の上昇勾配更新によって更新された後、自然画像を高い確率で誤分類する。
これらの摂動は画像に依存しないだけでなく、モデルに依存しないものであり、単一の摂動は見えないデータポイントと異なるニューラルネットワークアーキテクチャにまたがってうまく一般化される。
論文 参考訳(メタデータ) (2021-11-19T16:01:45Z) - Discriminator-Free Generative Adversarial Attack [87.71852388383242]
生成的ベースの敵攻撃は、この制限を取り除くことができる。
ASymmetric Saliency-based Auto-Encoder (SSAE) は摂動を生成する。
SSAEが生成した敵の例は、広く使われているモデルを崩壊させるだけでなく、優れた視覚的品質を実現する。
論文 参考訳(メタデータ) (2021-07-20T01:55:21Z) - Removing Adversarial Noise in Class Activation Feature Space [160.78488162713498]
クラスアクティベーション機能空間において,自己監視型対人訓練機構を実装することにより,対人雑音の除去を提案する。
クラスアクティベーション機能空間における敵対例と自然な例の間の距離を最小にするために、デノイジングモデルを訓練する。
経験的評価により, 従来の手法と比較して, 敵対的堅牢性が有意に向上できることが示された。
論文 参考訳(メタデータ) (2021-04-19T10:42:24Z) - Improving Transformation-based Defenses against Adversarial Examples
with First-order Perturbations [16.346349209014182]
研究によると、ニューラルネットワークは敵の攻撃を受けやすい。
これにより、ニューラルネットワークベースのインテリジェントシステムに対する潜在的な脅威が露呈する。
本稿では, 対向性強靭性を改善するために, 対向性摂動に対処する手法を提案する。
論文 参考訳(メタデータ) (2021-03-08T06:27:24Z) - Understanding Adversarial Examples from the Mutual Influence of Images
and Perturbations [83.60161052867534]
クリーンな画像と敵の摂動を遠ざけることで敵の例を分析し,その相互への影響を分析した。
以上の結果から,画像と普遍摂動の関係に対する新たな視点が示唆された。
我々は、オリジナルトレーニングデータを活用することなく、目標とするユニバーサルアタックの挑戦的なタスクを最初に達成した人物です。
論文 参考訳(メタデータ) (2020-07-13T05:00:09Z) - On the Matrix-Free Generation of Adversarial Perturbations for Black-Box
Attacks [1.199955563466263]
本稿では,ブラックボックス攻撃に適用可能な,このような対向的摂動の実用的な生成法を提案する。
攻撃者は、内部機能を起動したり、ディープニューラルネットワークの内部状態にアクセスしたりすることなく、そのような摂動を発生させる。
論文 参考訳(メタデータ) (2020-02-18T00:50:26Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
ブラインド画像のデノイングはコンピュータビジョンにおいて重要な問題であるが、非常に難しい問題である。
本稿では,ノイズ推定と画像デノーミングを併用した新しい変分推論手法を提案する。
論文 参考訳(メタデータ) (2019-08-29T15:54:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。