論文の概要: A Knowledge-guided Adversarial Defense for Resisting Malicious Visual Manipulation
- arxiv url: http://arxiv.org/abs/2504.08411v1
- Date: Fri, 11 Apr 2025 10:18:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-14 14:20:00.430743
- Title: A Knowledge-guided Adversarial Defense for Resisting Malicious Visual Manipulation
- Title(参考訳): 悪性視力回復のための知識誘導型対向防御法
- Authors: Dawei Zhou, Suzhi Gang, Decheng Liu, Tongliang Liu, Nannan Wang, Xinbo Gao,
- Abstract要約: 視覚的操作の悪意ある応用は、多くの分野でユーザーのセキュリティと評判に深刻な脅威をもたらしている。
本稿では,悪質な操作モデルを積極的に強制し,意味論的に混乱したサンプルを出力するために,知識誘導型敵防衛(KGAD)を提案する。
- 参考スコア(独自算出の注目度): 93.28532038721816
- License:
- Abstract: Malicious applications of visual manipulation have raised serious threats to the security and reputation of users in many fields. To alleviate these issues, adversarial noise-based defenses have been enthusiastically studied in recent years. However, ``data-only" methods tend to distort fake samples in the low-level feature space rather than the high-level semantic space, leading to limitations in resisting malicious manipulation. Frontier research has shown that integrating knowledge in deep learning can produce reliable and generalizable solutions. Inspired by these, we propose a knowledge-guided adversarial defense (KGAD) to actively force malicious manipulation models to output semantically confusing samples. Specifically, in the process of generating adversarial noise, we focus on constructing significant semantic confusions at the domain-specific knowledge level, and exploit a metric closely related to visual perception to replace the general pixel-wise metrics. The generated adversarial noise can actively interfere with the malicious manipulation model by triggering knowledge-guided and perception-related disruptions in the fake samples. To validate the effectiveness of the proposed method, we conduct qualitative and quantitative experiments on human perception and visual quality assessment. The results on two different tasks both show that our defense provides better protection compared to state-of-the-art methods and achieves great generalizability.
- Abstract(参考訳): 視覚的操作の悪意ある応用は、多くの分野でユーザーのセキュリティと評判に深刻な脅威をもたらしている。
これらの問題を緩和するために、近年、敵対的雑音に基づく防御が熱心に研究されている。
しかし、 `data-only' メソッドは、高レベルのセマンティック空間ではなく、低レベルの機能空間で偽のサンプルを歪ませる傾向があるため、悪意のある操作に抵抗する制限が生じる。
フロンティア研究は、ディープラーニングに知識を統合することで、信頼性と一般化可能なソリューションを生み出すことを示した。
これらに触発された我々は、悪意ある操作モデルに意味論的に混乱したサンプルを出力するよう積極的に強制する、知識誘導型敵防衛(KGAD)を提案する。
具体的には、対向雑音を生成する過程において、ドメイン固有の知識レベルで重要な意味的混乱を構築することに集中し、一般的なピクセル単位のメトリクスを置き換えるために、視覚的知覚と密接に関連するメトリクスを利用する。
生成した対向ノイズは、偽サンプルの知識誘導および知覚関連破壊を誘発することにより、悪意のある操作モデルに積極的に干渉することができる。
提案手法の有効性を検証するため,人間の知覚と視覚的品質評価の質的,定量的な実験を行った。
2つの異なるタスクの結果は、我々の防御が最先端の手法よりも優れた保護を提供し、非常に一般化可能であることを示している。
関連論文リスト
- Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Imperceptible Face Forgery Attack via Adversarial Semantic Mask [59.23247545399068]
本稿では, 対向性, 可視性に優れた対向性例を生成できるASMA(Adversarial Semantic Mask Attack framework)を提案する。
具体的には, 局所的なセマンティック領域の摂動を抑制し, 良好なステルス性を実現する, 対向型セマンティックマスク生成モデルを提案する。
論文 参考訳(メタデータ) (2024-06-16T10:38:11Z) - Detecting Adversarial Data using Perturbation Forgery [28.237738842260615]
逆検出は、自然データと逆データの間の分布とノイズパターンの相違に基づいて、データフローから逆データを特定し、フィルタリングすることを目的としている。
不均衡および異方性雑音パターンを回避した生成モデルに基づく新しい攻撃
本研究では,ノイズ分布,スパースマスク生成,擬似逆数データ生成を含む摂動フォージェリを提案し,不明瞭な勾配ベース,生成型および物理的逆数攻撃を検出可能な逆数検出器を訓練する。
論文 参考訳(メタデータ) (2024-05-25T13:34:16Z) - Adversarially Robust Deepfake Detection via Adversarial Feature Similarity Learning [0.0]
ディープフェイク技術は、デジタルコンテンツの信頼性を懸念し、効果的な検出方法の開発を必要としている。
敵は、検出モデルを騙して誤った出力を生成する、小さくて知覚できない摂動でディープフェイクビデオを操作できる。
本稿では,3つの基本的深い特徴学習パラダイムを統合したAFSL(Adversarial Feature similarity Learning)を紹介する。
論文 参考訳(メタデータ) (2024-02-06T11:35:05Z) - Constructing Semantics-Aware Adversarial Examples with a Probabilistic Perspective [4.168954634479465]
本稿では,敵対例の生成過程において,意味論の主観的理解を分布として組み込むための確率論的視点を提案する。
本手法は画像の全体的意味を保存し,人間の検出を困難にしている。
論文 参考訳(メタデータ) (2023-06-01T05:16:44Z) - Mitigating Adversarial Attacks in Deepfake Detection: An Exploration of
Perturbation and AI Techniques [1.0718756132502771]
敵の例は微妙な摂動で きれいな画像やビデオに 巧みに注入される
ディープフェイクは世論を操り、世論の評判を損なう強力なツールとして登場した。
この記事では、多面的な敵の例の世界を掘り下げ、ディープラーニングアルゴリズムを騙す能力の背後にある原則を解明する。
論文 参考訳(メタデータ) (2023-02-22T23:48:19Z) - Self-supervised Transformer for Deepfake Detection [112.81127845409002]
現実世界のシナリオにおけるディープフェイク技術は、顔偽造検知器のより強力な一般化能力を必要とする。
転送学習に触発されて、他の大規模な顔関連タスクで事前訓練されたニューラルネットワークは、ディープフェイク検出に有用な機能を提供する可能性がある。
本稿では,自己教師型変換器を用いた音声視覚コントラスト学習手法を提案する。
論文 参考訳(メタデータ) (2022-03-02T17:44:40Z) - TREATED:Towards Universal Defense against Textual Adversarial Attacks [28.454310179377302]
本稿では,様々な摂動レベルの攻撃に対して,仮定なしに防御できる汎用的対向検出手法であるTREATEDを提案する。
3つの競合するニューラルネットワークと2つの広く使われているデータセットの大規模な実験により、本手法はベースラインよりも優れた検出性能が得られることが示された。
論文 参考訳(メタデータ) (2021-09-13T03:31:20Z) - Adversarial Examples Detection beyond Image Space [88.7651422751216]
摂動と予測信頼の間にはコンプライアンスが存在することが分かり、予測信頼の面から少数の摂動攻撃を検出するための指針となる。
本研究では,画像ストリームが画素アーティファクトに注目し,勾配ストリームが信頼度アーティファクトに対応する2ストリームアーキテクチャによる画像空間を超えた手法を提案する。
論文 参考訳(メタデータ) (2021-02-23T09:55:03Z) - Stylized Adversarial Defense [105.88250594033053]
逆行訓練は摂動パターンを生成し、モデルを堅牢化するためのトレーニングセットにそれらを含む。
我々は、より強力な敵を作るために、機能空間から追加情報を活用することを提案する。
我々の対人訓練アプローチは、最先端の防御と比べて強い堅牢性を示している。
論文 参考訳(メタデータ) (2020-07-29T08:38:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。