論文の概要: Exploiting Featureswith Split-and-Share Module
- arxiv url: http://arxiv.org/abs/2108.04500v1
- Date: Tue, 10 Aug 2021 08:11:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-11 21:53:06.323173
- Title: Exploiting Featureswith Split-and-Share Module
- Title(参考訳): Split-and-Shareモジュールによるエクスプロイト機能
- Authors: Jaemin Lee, Minseok Seo, Jongchan Park, Dong-Geol Choi
- Abstract要約: Split-and-Share Module (SSM) は、ある機能を複数のサブクラスで部分的に共有する部分に分割する。
SSMは、鐘や笛なしで簡単にどんなアーキテクチャにも統合できる。
我々は、ImageNet-1K分類タスクにおけるSSMの有効性を広範囲に検証した。
- 参考スコア(独自算出の注目度): 6.245453620070586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep convolutional neural networks (CNNs) have shown state-of-the-art
performances in various computer vision tasks. Advances on CNN architectures
have focused mainly on designing convolutional blocks of the feature
extractors, but less on the classifiers that exploit extracted features. In
this work, we propose Split-and-Share Module (SSM),a classifier that splits a
given feature into parts, which are partially shared by multiple
sub-classifiers. Our intuition is that the more the features are shared, the
more common they will become, and SSM can encourage such structural
characteristics in the split features. SSM can be easily integrated into any
architecture without bells and whistles. We have extensively validated the
efficacy of SSM on ImageNet-1K classification task, andSSM has shown consistent
and significant improvements over baseline architectures. In addition, we
analyze the effect of SSM using the Grad-CAM visualization.
- Abstract(参考訳): deep convolutional neural networks (cnns)は様々なコンピュータビジョンタスクで最先端のパフォーマンスを示している。
cnnアーキテクチャの進歩は、主に特徴抽出器の畳み込みブロックを設計することに集中しているが、抽出された特徴を利用する分類器には依存していない。
本研究では,与えられた機能を部分に分割する分類器であるssm(slit-and-share module)を提案する。
私たちの直感では、機能が共有されるほど、それらがより一般的になり、SSMは分割された機能においてそのような構造的特性を奨励します。
SSMは、鐘や笛なしで簡単にどんなアーキテクチャにも統合できる。
我々は,ImageNet-1K分類タスクにおけるSSMの有効性を広範囲に検証し,ベースラインアーキテクチャよりも一貫した,重要な改善点を示した。
また,Grad-CAM視覚化を用いてSSMの効果を分析する。
関連論文リスト
- Investigation of Hierarchical Spectral Vision Transformer Architecture for Classification of Hyperspectral Imagery [7.839253919389809]
視覚変換器の理論的正当性は、HSI分類においてCNNアーキテクチャよりも優れている。
HSI分類に適した統合階層型スペクトルビジョン変換器アーキテクチャについて検討した。
視覚変換器の独特な強さは、その網羅的なアーキテクチャに起因すると結論付けている。
論文 参考訳(メタデータ) (2024-09-14T00:53:13Z) - Brain-Inspired Stepwise Patch Merging for Vision Transformers [6.108377966393714]
本稿では,ステップワイズ・パッチ・マージ(SPM)と呼ばれる新しい手法を提案する。
ImageNet-1K、COCO、ADE20Kなどのベンチマークデータセットで実施された大規模な実験は、SPMが様々なモデルの性能を大幅に改善することを示した。
論文 参考訳(メタデータ) (2024-09-11T03:04:46Z) - Demystify Transformers & Convolutions in Modern Image Deep Networks [82.32018252867277]
本稿では,一般のコンボリューションとアテンション演算子の真の利益を,詳細な研究により同定することを目的とする。
注意や畳み込みのようなこれらの特徴変換モジュールの主な違いは、それらの空間的特徴集約アプローチにある。
各種課題の実験と帰納的バイアスの解析により,ネットワークレベルとブロックレベルの高度な設計により,性能が著しく向上した。
論文 参考訳(メタデータ) (2022-11-10T18:59:43Z) - Deep Image Clustering with Contrastive Learning and Multi-scale Graph
Convolutional Networks [58.868899595936476]
コントラスト学習とマルチスケールグラフ畳み込みネットワーク(IcicleGCN)を用いた画像クラスタリング手法を提案する。
複数の画像データセットの実験は、最先端のIcicleGCNよりも優れたクラスタリング性能を示している。
論文 参考訳(メタデータ) (2022-07-14T19:16:56Z) - Towards efficient feature sharing in MIMO architectures [102.40140369542755]
マルチインプットのマルチアウトプットアーキテクチャでは、ひとつのベースネットワーク内でマルチワークをトレーニングし、サブネットワーク予測を平均化し、無料でアンサンブルの恩恵を受けることを提案している。
相対的な成功にもかかわらず、これらのアーキテクチャはパラメータの使用に不便である。
この論文では、学習したサブネットワークは、より小さなモバイルやAR/VRデバイスに適用性を制限する汎用的な機能でさえも共有できない点を強調します。
論文 参考訳(メタデータ) (2022-05-20T12:33:34Z) - Multi-level Second-order Few-shot Learning [111.0648869396828]
教師付きまたは教師なしの少数ショット画像分類と少数ショット動作認識のためのマルチレベル2次数列学習ネットワーク(MlSo)を提案する。
我々は、パワーノーマライズされた二階学習者ストリームと、複数のレベルの視覚的抽象化を表現する機能を組み合わせた、いわゆる2階学習者ストリームを活用している。
我々は,Omniglot, mini-ImageNet, tiered-ImageNet, Open MIC, CUB Birds, Stanford Dogs, Cars, HMDB51, UCF101, mini-MITなどのアクション認識データセットなどの標準データセットに対して,優れた結果を示す。
論文 参考訳(メタデータ) (2022-01-15T19:49:00Z) - Specificity-preserving RGB-D Saliency Detection [103.3722116992476]
本稿では,RGB-Dサリエンシ検出のための特異性保存ネットワーク(SP-Net)を提案する。
2つのモダリティ特化ネットワークと共有学習ネットワークを採用し、個別および共有唾液マップを生成する。
6つのベンチマークデータセットの実験では、SP-Netは他の最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2021-08-18T14:14:22Z) - DMSANet: Dual Multi Scale Attention Network [0.0]
我々は,最高の性能を達成するだけでなく,既存のモデルに比べてパラメータも少ない新しいアテンションモジュールを提案する。
私たちの注目モジュールは、軽量な性質のため、他の畳み込みニューラルネットワークと容易に統合できます。
論文 参考訳(メタデータ) (2021-06-13T10:31:31Z) - ResNeSt: Split-Attention Networks [86.25490825631763]
このアーキテクチャは、異なるネットワークブランチにチャンネルワイズを応用し、機能間相互作用のキャプチャと多様な表現の学習の成功を活用する。
我々のモデルはResNeStと呼ばれ、画像分類の精度と遅延トレードオフにおいてEfficientNetより優れています。
論文 参考訳(メタデータ) (2020-04-19T20:40:31Z) - Group Based Deep Shared Feature Learning for Fine-grained Image
Classification [31.84610555517329]
共有された特徴を明示的にモデル化し、その効果を除去し、拡張された分類結果を得るための新しいディープネットワークアーキテクチャを提案する。
我々はこのフレームワークをグループベースのDeep Shared Feature Learning (GSFL)と呼び、学習したネットワークをGSFL-Netと呼ぶ。
特殊オートエンコーダの重要な利点は、多用途であり、最先端のきめ細かい特徴抽出モデルと組み合わせて、それらと一緒にトレーニングすることで、パフォーマンスを直接改善できる点である。
論文 参考訳(メタデータ) (2020-04-04T00:01:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。