論文の概要: Investigation of Hierarchical Spectral Vision Transformer Architecture for Classification of Hyperspectral Imagery
- arxiv url: http://arxiv.org/abs/2409.09244v1
- Date: Sat, 14 Sep 2024 00:53:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 21:49:17.233503
- Title: Investigation of Hierarchical Spectral Vision Transformer Architecture for Classification of Hyperspectral Imagery
- Title(参考訳): ハイパースペクトル画像の分類のための階層型スペクトル視変換器アーキテクチャの検討
- Authors: Wei Liu, Saurabh Prasad, Melba Crawford,
- Abstract要約: 視覚変換器の理論的正当性は、HSI分類においてCNNアーキテクチャよりも優れている。
HSI分類に適した統合階層型スペクトルビジョン変換器アーキテクチャについて検討した。
視覚変換器の独特な強さは、その網羅的なアーキテクチャに起因すると結論付けている。
- 参考スコア(独自算出の注目度): 7.839253919389809
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the past three years, there has been significant interest in hyperspectral imagery (HSI) classification using vision Transformers for analysis of remotely sensed data. Previous research predominantly focused on the empirical integration of convolutional neural networks (CNNs) to augment the network's capability to extract local feature information. Yet, the theoretical justification for vision Transformers out-performing CNN architectures in HSI classification remains a question. To address this issue, a unified hierarchical spectral vision Transformer architecture, specifically tailored for HSI classification, is investigated. In this streamlined yet effective vision Transformer architecture, multiple mixer modules are strategically integrated separately. These include the CNN-mixer, which executes convolution operations; the spatial self-attention (SSA)-mixer and channel self-attention (CSA)-mixer, both of which are adaptations of classical self-attention blocks; and hybrid models such as the SSA+CNN-mixer and CSA+CNN-mixer, which merge convolution with self-attention operations. This integration facilitates the development of a broad spectrum of vision Transformer-based models tailored for HSI classification. In terms of the training process, a comprehensive analysis is performed, contrasting classical CNN models and vision Transformer-based counterparts, with particular attention to disturbance robustness and the distribution of the largest eigenvalue of the Hessian. From the evaluations conducted on various mixer models rooted in the unified architecture, it is concluded that the unique strength of vision Transformers can be attributed to their overarching architecture, rather than being exclusively reliant on individual multi-head self-attention (MSA) components.
- Abstract(参考訳): 過去3年間で、リモートセンシングデータの解析に視覚変換器を用いたハイパースペクトル画像(HSI)分類に大きな関心が寄せられている。
これまでの研究は主に、局所的な特徴情報を抽出するネットワークの能力を強化するために、畳み込みニューラルネットワーク(CNN)の実証的な統合に焦点を当てていた。
しかし、視覚変換器の理論的正当性は、HSI分類においてCNNアーキテクチャよりも優れている。
この問題に対処するため,HSI分類に適した統合階層型スペクトルビジョントランスフォーマーアーキテクチャについて検討した。
この合理化されながらも効果的なビジョントランスフォーマーアーキテクチャでは、複数のミキサーモジュールは戦略的に別々に統合される。
例えば、畳み込み操作を行うCNNミキサー、空間自己保持ミキサー(SSA)ミキサー(CSA)ミキサー(CSA)ミキサー(CSA)ミキサー(CSA)ミキサー(CSA)ミキサー(CSA)ミキサー(CSA+CNNミキサ(CSA+CNNミキサ(CSA+CNN-ミキサ))などである。
この統合により、HSI分類に適したトランスフォーマーベースの広範囲の視覚モデルの開発が容易になる。
学習過程に関して、古典的CNNモデルと視覚変換器をベースとしたモデルとを対比した総合的な分析を行い、特に乱れの堅牢性とヘッセン語における最大の固有値の分布に注目した。
統合アーキテクチャに根ざした様々なミキサーモデルを用いて行った評価から、視覚変換器の独特な強さは、個々のマルチヘッド自己注意(MSA)コンポーネントにのみ依存するのではなく、その全体構造に起因していると結論付けている。
関連論文リスト
- CMTNet: Convolutional Meets Transformer Network for Hyperspectral Images Classification [3.821081081400729]
現在の畳み込みニューラルネットワーク(CNN)は、ハイパースペクトルデータの局所的な特徴に焦点を当てている。
Transformerフレームワークは、ハイパースペクトル画像からグローバルな特徴を抽出する。
本研究は、CMTNet(Convolutional Meet Transformer Network)を紹介する。
論文 参考訳(メタデータ) (2024-06-20T07:56:51Z) - NiNformer: A Network in Network Transformer with Token Mixing as a Gating Function Generator [1.3812010983144802]
このアテンション機構はコンピュータビジョンでビジョントランスフォーマー ViT として使用された。
コストがかかり、効率的な最適化のためにかなりのサイズのデータセットを必要とするという欠点がある。
本稿では,新しい計算ブロックを標準ViTブロックの代替として導入し,計算負荷を削減する。
論文 参考訳(メタデータ) (2024-03-04T19:08:20Z) - Correlated Attention in Transformers for Multivariate Time Series [22.542109523780333]
本稿では,特徴量依存を効率的に捕捉し,既存のトランスフォーマーのエンコーダブロックにシームレスに統合できる新しいアテンション機構を提案する。
特に、関連性のある注意は、特徴チャネルを横断して、クエリとキー間の相互共分散行列をラグ値で計算し、サブシリーズレベルで選択的に表現を集約する。
このアーキテクチャは、瞬時だけでなく、ラタグされた相互相関の発見と表現の学習を容易にすると同時に、本質的に時系列の自動相関をキャプチャする。
論文 参考訳(メタデータ) (2023-11-20T17:35:44Z) - Demystify Transformers & Convolutions in Modern Image Deep Networks [82.32018252867277]
本稿では,一般のコンボリューションとアテンション演算子の真の利益を,詳細な研究により同定することを目的とする。
注意や畳み込みのようなこれらの特徴変換モジュールの主な違いは、それらの空間的特徴集約アプローチにある。
各種課題の実験と帰納的バイアスの解析により,ネットワークレベルとブロックレベルの高度な設計により,性能が著しく向上した。
論文 参考訳(メタデータ) (2022-11-10T18:59:43Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
自己注意モジュール(SAM)は、異なる層にまたがる強い相関した注意マップを生成する。
Dense-and-Implicit Attention (DIA)はSAMをレイヤ間で共有し、長期間のメモリモジュールを使用する。
我々のシンプルで効果的なDIAは、様々なネットワークバックボーンを一貫して拡張できます。
論文 参考訳(メタデータ) (2022-10-27T13:24:08Z) - Vision Transformer with Convolutions Architecture Search [72.70461709267497]
本稿では,畳み込み型アーキテクチャサーチ(VTCAS)を用いたアーキテクチャ探索手法を提案する。
VTCASによって探索された高性能バックボーンネットワークは、畳み込みニューラルネットワークの望ましい特徴をトランスフォーマーアーキテクチャに導入する。
これは、特に低照度屋内シーンにおいて、物体認識のためのニューラルネットワークの堅牢性を高める。
論文 参考訳(メタデータ) (2022-03-20T02:59:51Z) - Rich CNN-Transformer Feature Aggregation Networks for Super-Resolution [50.10987776141901]
近年の視覚変換器と自己注意は,様々なコンピュータビジョンタスクにおいて有望な成果を上げている。
我々は,CNNの局所的特徴とトランスフォーマーが捉えた長距離依存性を活用する,超解像(SR)タスクのための効果的なハイブリッドアーキテクチャを提案する。
提案手法は,多数のベンチマークデータセットから最先端のSR結果を得る。
論文 参考訳(メタデータ) (2022-03-15T06:52:25Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - A Battle of Network Structures: An Empirical Study of CNN, Transformer,
and MLP [121.35904748477421]
畳み込みニューラルネットワーク(CNN)は、コンピュータビジョンのための支配的なディープニューラルネットワーク(DNN)アーキテクチャである。
トランスフォーマーとマルチ層パーセプトロン(MLP)ベースのモデル(Vision TransformerやVision-Mixer)が新しいトレンドを導い始めた。
本稿では,これらのDNN構造について実証的研究を行い,それぞれの長所と短所を理解しようとする。
論文 参考訳(メタデータ) (2021-08-30T06:09:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。