論文の概要: Self-supervised Consensus Representation Learning for Attributed Graph
- arxiv url: http://arxiv.org/abs/2108.04822v1
- Date: Tue, 10 Aug 2021 07:53:09 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-12 13:44:34.577198
- Title: Self-supervised Consensus Representation Learning for Attributed Graph
- Title(参考訳): 有意グラフに対する自己教師付きコンセンサス表現学習
- Authors: Changshu Liu, Liangjian Wen, Zhao Kang, Guangchun Luo, Ling Tian
- Abstract要約: グラフ表現学習に自己教師付き学習機構を導入する。
本稿では,新しい自己教師型コンセンサス表現学習フレームワークを提案する。
提案手法はトポロジグラフと特徴グラフの2つの視点からグラフを扱う。
- 参考スコア(独自算出の注目度): 15.729417511103602
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Attempting to fully exploit the rich information of topological structure and
node features for attributed graph, we introduce self-supervised learning
mechanism to graph representation learning and propose a novel Self-supervised
Consensus Representation Learning (SCRL) framework. In contrast to most
existing works that only explore one graph, our proposed SCRL method treats
graph from two perspectives: topology graph and feature graph. We argue that
their embeddings should share some common information, which could serve as a
supervisory signal. Specifically, we construct the feature graph of node
features via k-nearest neighbor algorithm. Then graph convolutional network
(GCN) encoders extract features from two graphs respectively. Self-supervised
loss is designed to maximize the agreement of the embeddings of the same node
in the topology graph and the feature graph. Extensive experiments on real
citation networks and social networks demonstrate the superiority of our
proposed SCRL over the state-of-the-art methods on semi-supervised node
classification task. Meanwhile, compared with its main competitors, SCRL is
rather efficient.
- Abstract(参考訳): 属性グラフのトポロジ構造とノード特徴の豊富な情報を十分に活用しようと,グラフ表現学習に自己教師付き学習機構を導入し,新しい自己教師型コンセンサス表現学習(SCRL)フレームワークを提案する。
1つのグラフのみを探索する既存のほとんどの作品とは対照的に、提案するscrl法は2つの視点からグラフを扱います。
我々は、それらの埋め込みはいくつかの共通の情報を共有するべきであると主張している。
具体的には,k-nearest近傍アルゴリズムを用いてノード特徴の特徴グラフを構築する。
グラフ畳み込みネットワーク(GCN)エンコーダは、2つのグラフからそれぞれ特徴を抽出する。
自己教師付き損失は、トポロジーグラフと特徴グラフにおける同一ノードの埋め込みの一致を最大化するように設計されている。
実引用ネットワークとソーシャルネットワークに関する広範囲な実験により,半教師付きノード分類タスクにおける最先端手法に対する提案のscrlの優位性が証明された。
一方、SCRLは主要なライバルと比べてかなり効率的だ。
関連論文リスト
- Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
グラフ構造化データの表現学習では、多くの人気のあるグラフニューラルネットワーク(GNN)が長距離依存をキャプチャできない。
本稿では,自己注意型グラフ畳み込みネットワーク(GCN-SA)と呼ばれる新しいグラフ学習フレームワークを提案する。
提案手法はノードレベルの表現学習において例外的な一般化能力を示す。
論文 参考訳(メタデータ) (2024-03-06T05:00:31Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
グラフ畳み込みネットワーク(GCN)は、グラフベースのクラスタリングを改善する上で大きな可能性を秘めている。
モデルはGCNを適用するために初期グラフを事前に推定する。
一般的なデータクラスタリングには,Deep Contrastive Graph Learning (DCGL)モデルが提案されている。
論文 参考訳(メタデータ) (2024-02-25T07:03:37Z) - Saliency-Aware Regularized Graph Neural Network [39.82009838086267]
グラフ分類のためのSAR-GNN(Saliency-Aware Regularized Graph Neural Network)を提案する。
まず,コンパクトなグラフ表現とノード特徴とのセマンティックな類似性を測定することで,グローバルノードの正当性を推定する。
そして、学習した塩分濃度分布を利用して、背骨の近傍集合を規則化する。
論文 参考訳(メタデータ) (2024-01-01T13:44:16Z) - Local Structure-aware Graph Contrastive Representation Learning [12.554113138406688]
複数のビューからノードの構造情報をモデル化するための局所構造対応グラフ比較表現学習法(LS-GCL)を提案する。
ローカルビューでは、各ターゲットノードのセマンティックサブグラフが共有GNNエンコーダに入力され、サブグラフレベルに埋め込まれたターゲットノードを取得する。
グローバルな視点では、元のグラフはノードの必要不可欠な意味情報を保存しているので、共有GNNエンコーダを利用して、グローバルなグラフレベルでターゲットノードの埋め込みを学習する。
論文 参考訳(メタデータ) (2023-08-07T03:23:46Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
自己教師付きグラフ類似性学習のためのコントラストグラフマッチングネットワーク(CGMN)を提案する。
我々は,効率的なノード表現学習のために,クロスビューインタラクションとクロスグラフインタラクションという2つの戦略を用いる。
我々はノード表現をグラフ類似性計算のためのプール演算によりグラフレベル表現に変換する。
論文 参考訳(メタデータ) (2022-05-30T13:20:26Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
本稿では、観測されたグラフと潜伏グラフのグラフ畳み込み関係を提案し、グラフ学習タスクをネットワーク逆(デコンボリューション)問題として定式化する。
固有分解に基づくスペクトル法の代わりに、近似勾配反復をアンロール・トランケートして、グラフデコンボリューションネットワーク(GDN)と呼ばれるパラメータ化ニューラルネットワークアーキテクチャに到達させる。
GDNは、教師付き方式でグラフの分布を学習し、損失関数を適応させることでリンク予測やエッジウェイト回帰タスクを実行し、本質的に帰納的である。
論文 参考訳(メタデータ) (2022-05-19T14:08:15Z) - Graph Representation Learning via Contrasting Cluster Assignments [57.87743170674533]
GRCCAと呼ばれるクラスタ割り当てを対比して、教師なしグラフ表現モデルを提案する。
クラスタリングアルゴリズムとコントラスト学習を組み合わせることで、局所的およびグローバルな情報を合成的にうまく活用する動機付けがある。
GRCCAは、ほとんどのタスクにおいて強力な競争力を持っている。
論文 参考訳(メタデータ) (2021-12-15T07:28:58Z) - Towards Graph Self-Supervised Learning with Contrastive Adjusted Zooming [48.99614465020678]
本稿では,グラフコントラスト適応ズームによる自己教師付きグラフ表現学習アルゴリズムを提案する。
このメカニズムにより、G-Zoomはグラフから複数のスケールから自己超越信号を探索して抽出することができる。
我々は,実世界のデータセットに関する広範な実験を行い,提案したモデルが常に最先端の手法より優れていることを示す。
論文 参考訳(メタデータ) (2021-11-20T22:45:53Z) - Reasoning Graph Networks for Kinship Verification: from Star-shaped to
Hierarchical [85.0376670244522]
階層型推論グラフネットワークの学習による顔の親和性検証の問題点について検討する。
より強力で柔軟なキャパシティを利用するために,星型推論グラフネットワーク(S-RGN)を開発した。
また、より強力で柔軟なキャパシティを利用する階層型推論グラフネットワーク(H-RGN)も開発しています。
論文 参考訳(メタデータ) (2021-09-06T03:16:56Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
グラフ埋め込みは、高次元および非ユークリッド特徴空間でデータ構造を変換しエンコードする方法である。
CensNetは一般的なグラフ埋め込みフレームワークで、ノードとエッジの両方を潜在機能空間に埋め込む。
提案手法は,4つのグラフ学習課題における最先端のパフォーマンスを達成または一致させる。
論文 参考訳(メタデータ) (2020-10-25T22:39:31Z) - Unsupervised Hierarchical Graph Representation Learning by Mutual
Information Maximization [8.14036521415919]
教師なしグラフ表現学習法,Unsupervised Hierarchical Graph Representation (UHGR)を提案する。
本手法は,「ローカル」表現と「グローバル」表現の相互情報の最大化に焦点をあてる。
その結果,提案手法は,いくつかのベンチマークにおいて,最先端の教師付き手法に匹敵する結果が得られることがわかった。
論文 参考訳(メタデータ) (2020-03-18T18:21:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。