Rethinking Coarse-to-Fine Approach in Single Image Deblurring
- URL: http://arxiv.org/abs/2108.05054v1
- Date: Wed, 11 Aug 2021 06:37:01 GMT
- Title: Rethinking Coarse-to-Fine Approach in Single Image Deblurring
- Authors: Sung-Jin Cho, Seo-Won Ji, Jun-Pyo Hong, Seung-Won Jung, Sung-Jea Ko
- Abstract summary: We present a fast and accurate deblurring network design using a multi-input multi-output U-net.
The proposed network outperforms the state-of-the-art methods in terms of both accuracy and computational complexity.
- Score: 19.195704769925925
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Coarse-to-fine strategies have been extensively used for the architecture
design of single image deblurring networks. Conventional methods typically
stack sub-networks with multi-scale input images and gradually improve
sharpness of images from the bottom sub-network to the top sub-network,
yielding inevitably high computational costs. Toward a fast and accurate
deblurring network design, we revisit the coarse-to-fine strategy and present a
multi-input multi-output U-net (MIMO-UNet). The MIMO-UNet has three distinct
features. First, the single encoder of the MIMO-UNet takes multi-scale input
images to ease the difficulty of training. Second, the single decoder of the
MIMO-UNet outputs multiple deblurred images with different scales to mimic
multi-cascaded U-nets using a single U-shaped network. Last, asymmetric feature
fusion is introduced to merge multi-scale features in an efficient manner.
Extensive experiments on the GoPro and RealBlur datasets demonstrate that the
proposed network outperforms the state-of-the-art methods in terms of both
accuracy and computational complexity. Source code is available for research
purposes at https://github.com/chosj95/MIMO-UNet.
Related papers
- Parameter-Inverted Image Pyramid Networks [49.35689698870247]
We propose a novel network architecture known as the Inverted Image Pyramid Networks (PIIP)
Our core idea is to use models with different parameter sizes to process different resolution levels of the image pyramid.
PIIP achieves superior performance in tasks such as object detection, segmentation, and image classification.
arXiv Detail & Related papers (2024-06-06T17:59:10Z) - Multi-scale Unified Network for Image Classification [33.560003528712414]
CNNs face notable challenges in performance and computational efficiency when dealing with real-world, multi-scale image inputs.
We propose Multi-scale Unified Network (MUSN) consisting of multi-scales, a unified network, and scale-invariant constraint.
MUSN yields an accuracy increase up to 44.53% and diminishes FLOPs by 7.01-16.13% in multi-scale scenarios.
arXiv Detail & Related papers (2024-03-27T06:40:26Z) - Efficient Multi-scale Network with Learnable Discrete Wavelet Transform for Blind Motion Deblurring [25.36888929483233]
We propose a multi-scale network based on single-input and multiple-outputs(SIMO) for motion deblurring.
We combine the characteristics of real-world trajectories with a learnable wavelet transform module to focus on the directional continuity and frequency features of the step-by-step transitions between blurred images to sharp images.
arXiv Detail & Related papers (2023-12-29T02:59:40Z) - Unsupervised convolutional neural network fusion approach for change
detection in remote sensing images [1.892026266421264]
We introduce a completely unsupervised shallow convolutional neural network (USCNN) fusion approach for change detection.
Our model has three features: the entire training process is conducted in an unsupervised manner, the network architecture is shallow, and the objective function is sparse.
Experimental results on four real remote sensing datasets indicate the feasibility and effectiveness of the proposed approach.
arXiv Detail & Related papers (2023-11-07T03:10:17Z) - Spatially-Adaptive Feature Modulation for Efficient Image
Super-Resolution [90.16462805389943]
We develop a spatially-adaptive feature modulation (SAFM) mechanism upon a vision transformer (ViT)-like block.
Proposed method is $3times$ smaller than state-of-the-art efficient SR methods.
arXiv Detail & Related papers (2023-02-27T14:19:31Z) - Multi-scale Transformer Network with Edge-aware Pre-training for
Cross-Modality MR Image Synthesis [52.41439725865149]
Cross-modality magnetic resonance (MR) image synthesis can be used to generate missing modalities from given ones.
Existing (supervised learning) methods often require a large number of paired multi-modal data to train an effective synthesis model.
We propose a Multi-scale Transformer Network (MT-Net) with edge-aware pre-training for cross-modality MR image synthesis.
arXiv Detail & Related papers (2022-12-02T11:40:40Z) - ShuffleMixer: An Efficient ConvNet for Image Super-Resolution [88.86376017828773]
We propose ShuffleMixer, for lightweight image super-resolution that explores large convolution and channel split-shuffle operation.
Specifically, we develop a large depth-wise convolution and two projection layers based on channel splitting and shuffling as the basic component to mix features efficiently.
Experimental results demonstrate that the proposed ShuffleMixer is about 6x smaller than the state-of-the-art methods in terms of model parameters and FLOPs.
arXiv Detail & Related papers (2022-05-30T15:26:52Z) - Manifold Regularized Dynamic Network Pruning [102.24146031250034]
This paper proposes a new paradigm that dynamically removes redundant filters by embedding the manifold information of all instances into the space of pruned networks.
The effectiveness of the proposed method is verified on several benchmarks, which shows better performance in terms of both accuracy and computational cost.
arXiv Detail & Related papers (2021-03-10T03:59:03Z) - Image deblurring based on lightweight multi-information fusion network [6.848061582669787]
We propose a lightweight multiinformation fusion network (LMFN) for image deblurring.
In the encoding stage, the image feature is reduced to various smallscale spaces for multi-scale information extraction and fusion.
Then, a distillation network is used in the decoding stage, which allows the network benefit the most from residual learning.
Our network can achieve state-of-the-art image deblurring result with smaller number of parameters and outperforms existing methods in model complexity.
arXiv Detail & Related papers (2021-01-14T00:37:37Z) - Adaptive Context-Aware Multi-Modal Network for Depth Completion [107.15344488719322]
We propose to adopt the graph propagation to capture the observed spatial contexts.
We then apply the attention mechanism on the propagation, which encourages the network to model the contextual information adaptively.
Finally, we introduce the symmetric gated fusion strategy to exploit the extracted multi-modal features effectively.
Our model, named Adaptive Context-Aware Multi-Modal Network (ACMNet), achieves the state-of-the-art performance on two benchmarks.
arXiv Detail & Related papers (2020-08-25T06:00:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.