Remote generation of magnon Schr\"{o}dinger cat state via magnon-photon
entanglement
- URL: http://arxiv.org/abs/2108.05095v1
- Date: Wed, 11 Aug 2021 08:34:13 GMT
- Title: Remote generation of magnon Schr\"{o}dinger cat state via magnon-photon
entanglement
- Authors: Feng-Xiao Sun, Sha-Sha Zheng, Yang Xiao, Qihuang Gong, Qiongyi He, Ke
Xia
- Abstract summary: Magnon cat state represents a macroscopic quantum superposition of collective magnetic excitations of large number spins.
Remote generation and manipulation of Schr"odinger cat states are particularly interesting for the development of long-distance and large-scale quantum information processing.
- Score: 7.712681681252787
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Magnon cat state represents a macroscopic quantum superposition of collective
magnetic excitations of large number spins that not only provides fundamental
tests of macroscopic quantum effects but also finds applications in quantum
metrology and quantum computation. In particular, remote generation and
manipulation of Schr\"{o}dinger cat states are particularly interesting for the
development of long-distance and large-scale quantum information processing.
Here, we propose an approach to remotely prepare magnon even/odd cat states by
performing local non-Gaussian operations on the optical mode that is entangled
with magnon mode through pulsed optomagnonic interaction. By evaluating key
properties of the resulting cat states, we show that for experimentally
feasible parameters they are generated with both high fidelity and
nonclassicality, and with a size large enough to be useful for quantum
technologies. Furthermore, the effects of experimental imperfections such as
the error of projective measurements and dark count when performing
single-photon operations have been discussed, where the lifetime of the created
magnon cat states is expected to be $t\sim1\,\mu$s.
Related papers
- A Superconducting Single-Atom Phonon Laser [0.0]
We experimentally demonstrate a direct quantum-acoustic equivalent of a single-atom laser.
A single superconducting qubit coupled to a high-overtone bulk acoustic resonator is used to drive the onset of phonon lasing.
We observe the absence of a sharp lower lasing threshold and characteristic upper lasing threshold, unique predictions of single-atom lasing.
arXiv Detail & Related papers (2023-12-21T15:37:55Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Generating optical cat states via quantum interference of multi-path
free-electron-photons interactions [0.0]
We propose a scheme to generate optical cat states based on the quantum interference of multi-path free-electron-photons interactions.
We show that the Wigner negativity oscillates with the coupling strength, and the optical cat states are successfully generated with high fidelity.
arXiv Detail & Related papers (2023-06-22T15:17:48Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Method to deterministically generate large-amplitude optical cat states [1.146825766525396]
Cat states are an important resource in the study of macroscopic quantum superposition and quantum information applications.
We demonstrate that, by utilizing interaction-free measurement and the quantum Zeno effect, even a fragile quantum microscopic system can deterministically control and become entangled with strong light fields.
We show that the preparation of cat states is possible even when the quantum microsystem suffers from significant photon loss.
arXiv Detail & Related papers (2023-01-07T12:38:47Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Protecting the quantum interference of cat states by phase-space
compression [45.82374977939355]
Cat states with their unique phase-space interference properties are ideal candidates for understanding quantum mechanics.
They are highly susceptible to photon loss, which inevitably diminishes their quantum non-Gaussian features.
Here, we protect these non-Gaussian features by compressing the phase-space distribution of a cat state.
arXiv Detail & Related papers (2022-12-02T16:06:40Z) - Study of decoherence of a superposition of macroscopic quantum states by
means the consideration of a multimode state of a Schrodinger cat [0.0]
Quantum Schrodinger cat states are of great interest in quantum communications and quantum optics.
The analysis of the Schrodinger cat states coherence is an important task for their complete practical application.
The research results have significant application and can be used in the development of high-dimensional quantum information processing systems.
arXiv Detail & Related papers (2022-01-09T19:29:25Z) - A flying Schr\"odinger cat in multipartite entangled states [6.219063677193734]
We create flying multipartite Schr"odinger cat states by reflecting coherent state photons from a microwave cavity containing a superconducting qubit.
We also witness the hybrid entanglement between discrete-variable states (the qubit) and continuous-variable states (the flying multipartite cat) through a joint quantum state tomography.
arXiv Detail & Related papers (2021-12-02T13:12:29Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.