論文の概要: PGCD: a position-guied contributive distribution unit for aspect based
sentiment analysis
- arxiv url: http://arxiv.org/abs/2108.05098v1
- Date: Wed, 11 Aug 2021 08:43:13 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-12 13:35:00.553802
- Title: PGCD: a position-guied contributive distribution unit for aspect based
sentiment analysis
- Title(参考訳): PGCD:アスペクトベース感情分析のための位置誘導帰属分布ユニット
- Authors: Zijian Zhang, Chenxin Zhang, Qin Liu, Hongming Zhu, Jiangfeng Li
- Abstract要約: 位置ガイド型貢献分布(PGCD)ユニットを提案する。
位置依存型コントリビューションパターンを実現し、ABSAタスクのアスペクト関連ステートメント特徴を生成する。
- 参考スコア(独自算出の注目度): 3.3205853660267635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Aspect based sentiment analysis (ABSA), exploring sentim- ent polarity of
aspect-given sentence, has drawn widespread applications in social media and
public opinion. Previously researches typically derive aspect-independent
representation by sentence feature generation only depending on text data. In
this paper, we propose a Position-Guided Contributive Distribution (PGCD) unit.
It achieves a position-dependent contributive pattern and generates
aspect-related statement feature for ABSA task. Quoted from Shapley Value, PGCD
can gain position-guided contextual contribution and enhance the aspect-based
representation. Furthermore, the unit can be used for improving effects on
multimodal ABSA task, whose datasets restructured by ourselves. Extensive
experiments on both text and text-audio level using dataset (SemEval) show that
by applying the proposed unit, the mainstream models advance performance in
accuracy and F1 score.
- Abstract(参考訳): アスペクト・ベース・感情分析(absa)は、アスペクト・ギブン文のセンチメント・エント極性を探るもので、ソーシャルメディアや世論に広く応用されている。
従来の研究は、テキストデータにのみ依存する文特徴生成によるアスペクト非依存表現を導出していた。
本稿では,位置ガイド型コントリビューティブ・ディストリビュータ(PGCD)ユニットを提案する。
位置依存型コントリビューションパターンを実現し、ABSAタスクのアスペクト関連ステートメント特徴を生成する。
Shapley Valueから引用すると、PGCDは位置誘導型コンテキストコントリビューションを獲得し、アスペクトベースの表現を強化することができる。
さらに、このユニットは、データセットを自身で再構成したマルチモーダルABSAタスクへの影響を改善するために使用できる。
データセット(SemEval)を用いたテキストレベルとテキストオーディオレベルの両方の大規模な実験により、提案した単位を適用して、メインストリームモデルが精度とF1スコアを向上することを示した。
関連論文リスト
- It is Simple Sometimes: A Study On Improving Aspect-Based Sentiment Analysis Performance [3.951769809066429]
タスク記述にNLP関連タスクプレフィックスを付加することにより、命令学習パラダイムの拡張であるPFInstructを提案する。
この単純なアプローチは全てのテストされたSemEvalサブタスクのパフォーマンスを改善し、ATEサブタスク(Rest14)の以前の状態(SOTA)を+3.28 F1スコア、AOOEサブタスクの平均+5.43 F1スコアで上回った。
論文 参考訳(メタデータ) (2024-05-31T08:57:09Z) - ROAST: Review-level Opinion Aspect Sentiment Target Joint Detection for ABSA [50.90538760832107]
本研究は新たな課題であるROAST(Review-Level Opinion Aspect Sentiment Target)を提示する。
ROASTは、文章レベルのABSAとテキストレベルのABSAのギャップを埋めようとしている。
利用可能なデータセットを拡張してROASTを有効にし、以前の研究で指摘された欠点に対処します。
論文 参考訳(メタデータ) (2024-05-30T17:29:15Z) - OATS: Opinion Aspect Target Sentiment Quadruple Extraction Dataset for
Aspect-Based Sentiment Analysis [55.61047894397937]
アスペクトベースの感情分析(ABSA)は、ユーザ生成レビュー内の異なる要素に特有の感情を理解する。
OATSデータセットは3つの新しいドメインを包含し,27,470の文レベルと17,092のレビューレベルから構成される。
私たちのイニシアチブは、レストランやラップトップのようなよく知られたドメイン、複雑な四重項抽出タスクのための限られたデータ、時には文とレビューレベルの感情の相乗効果の監視といった、特定の観察されたギャップを埋めることを目指しています。
論文 参考訳(メタデータ) (2023-09-23T07:39:16Z) - Survey of Aspect-based Sentiment Analysis Datasets [55.61047894397937]
アスペクトベースの感情分析(ABSA)は、ユーザ生成レビューの分析を必要とする自然言語処理の問題である。
ABSAの多くの散在したコーパスは、研究者が特定のABSAサブタスクに適したコーパスを素早く特定することを困難にしている。
本研究では,自律型ABSAシステムの学習・評価に使用できるコーパスデータベースを提案する。
論文 参考訳(メタデータ) (2022-04-11T16:23:36Z) - BERT-ASC: Auxiliary-Sentence Construction for Implicit Aspect Learning in Sentiment Analysis [4.522719296659495]
本稿ではアスペクト分類とアスペクトベース感情サブタスクに対処する統合フレームワークを提案する。
コーパスのセマンティック情報を用いて暗黙的側面のための補助文を構築する機構を導入する。
次に、BERTはアスペクト自体ではなく、この補助文に応答してアスペクト固有の表現を学ぶことを推奨する。
論文 参考訳(メタデータ) (2022-03-22T13:12:27Z) - Towards Unifying the Label Space for Aspect- and Sentence-based
Sentiment Analysis [16.23682353651523]
DPL(Dual-granularity Pseudo Labeling)と呼ばれる新しいフレームワークを提案する。
DPLは、以前の作業を大幅に上回った標準ベンチマークで最先端のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2022-03-14T13:21:57Z) - A Closer Look at Debiased Temporal Sentence Grounding in Videos:
Dataset, Metric, and Approach [53.727460222955266]
テンポラル・センテンス・グラウンディング・イン・ビデオ(TSGV)は、未編集のビデオに自然言語文を埋め込むことを目的としている。
最近の研究では、現在のベンチマークデータセットには明らかなモーメントアノテーションバイアスがあることが判明している。
偏りのあるデータセットによる膨らませ評価を緩和するため、基礎的リコールスコアを割引する新しい評価基準「dR@n,IoU@m」を導入する。
論文 参考訳(メタデータ) (2022-03-10T08:58:18Z) - Exploring Conditional Text Generation for Aspect-Based Sentiment
Analysis [28.766801337922306]
アスペクトベース感情分析(Aspect-based sentiment analysis、ABSA)は、ユーザ生成レビューを処理して評価対象を決定するNLPタスクである。
本稿では,ABSAを抽象的な要約型条件文生成タスクに変換し,目的,側面,極性を用いて補助文を生成することを提案する。
論文 参考訳(メタデータ) (2021-10-05T20:08:25Z) - Understanding Pre-trained BERT for Aspect-based Sentiment Analysis [71.40586258509394]
本稿では、アスペクトベース感情分析(ABSA)におけるタスクに対するBERTのレビューから得られた事前学習された隠れ表現について分析する。
アスペクトや意見のアノテーションなしでラベル付けされていないコーパスでトレーニングされた(マスクされた)言語モデルの一般的なプロキシタスクが、ABSAの下流タスクにどのように重要な機能を提供するかは明らかではない。
論文 参考訳(メタデータ) (2020-10-31T02:21:43Z) - Weakly-Supervised Aspect-Based Sentiment Analysis via Joint
Aspect-Sentiment Topic Embedding [71.2260967797055]
アスペクトベース感情分析のための弱教師付きアプローチを提案する。
We learn sentiment, aspects> joint topic embeddeds in the word embedding space。
次に、ニューラルネットワークを用いて単語レベルの識別情報を一般化する。
論文 参考訳(メタデータ) (2020-10-13T21:33:24Z) - A Position Aware Decay Weighted Network for Aspect based Sentiment
Analysis [3.1473798197405944]
ABSAでは、テキストはそれぞれの側面に応じて複数の感情を持つことができる。
ATSAの既存のアプローチのほとんどは、異なるサブネットワークを通してアスペクト情報を取り入れている。
本稿では,その側面の位置情報を活用するモデルを提案する。
論文 参考訳(メタデータ) (2020-05-03T09:22:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。