論文の概要: Exploring Conditional Text Generation for Aspect-Based Sentiment
Analysis
- arxiv url: http://arxiv.org/abs/2110.02334v1
- Date: Tue, 5 Oct 2021 20:08:25 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-08 09:50:51.215372
- Title: Exploring Conditional Text Generation for Aspect-Based Sentiment
Analysis
- Title(参考訳): アスペクトベース感性分析のための条件付きテキスト生成の探索
- Authors: Siva Uday Sampreeth Chebolu, Franck Dernoncourt, Nedim Lipka, Thamar
Solorio
- Abstract要約: アスペクトベース感情分析(Aspect-based sentiment analysis、ABSA)は、ユーザ生成レビューを処理して評価対象を決定するNLPタスクである。
本稿では,ABSAを抽象的な要約型条件文生成タスクに変換し,目的,側面,極性を用いて補助文を生成することを提案する。
- 参考スコア(独自算出の注目度): 28.766801337922306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aspect-based sentiment analysis (ABSA) is an NLP task that entails processing
user-generated reviews to determine (i) the target being evaluated, (ii) the
aspect category to which it belongs, and (iii) the sentiment expressed towards
the target and aspect pair. In this article, we propose transforming ABSA into
an abstract summary-like conditional text generation task that uses targets,
aspects, and polarities to generate auxiliary statements. To demonstrate the
efficacy of our task formulation and a proposed system, we fine-tune a
pre-trained model for conditional text generation tasks to get new
state-of-the-art results on a few restaurant domains and urban neighborhoods
domain benchmark datasets.
- Abstract(参考訳): アスペクトベースの感情分析(ABSA)は、ユーザ生成レビューを処理して判断するNLPタスクである
i) 対象が評価されていること
(ii)その属するアスペクトカテゴリ、及び
(iii)対象とアスペクト対に対して表現された感情。
本稿では,ABSAを抽象的な要約型条件文生成タスクに変換し,目的,側面,極性を用いて補助文を生成することを提案する。
この課題定式化と提案システムの有効性を実証するために,条件付きテキスト生成タスクのための事前学習モデルを構築し,いくつかのレストランドメインと都市近郊ドメインベンチマークデータセットで最新の結果を得る。
関連論文リスト
- Deep Content Understanding Toward Entity and Aspect Target Sentiment Analysis on Foundation Models [0.8602553195689513]
Entity-Aspect Sentiment Triplet extract (EASTE)は、Aspect-Based Sentiment Analysisタスクである。
本研究は,EASTEタスクにおける高性能化を目標とし,モデルサイズ,タイプ,適応技術がタスクパフォーマンスに与える影響について検討する。
最終的には、複雑な感情分析における詳細な洞察と最先端の成果を提供する。
論文 参考訳(メタデータ) (2024-07-04T16:48:14Z) - Evaluating Span Extraction in Generative Paradigm: A Reflection on Aspect-Based Sentiment Analysis [7.373480417322289]
本稿では,生成パラダイムがもたらす課題について述べる。
生成的アウトプットと他の評価指標の整合性に関わる複雑さを強調します。
我々の貢献は、この生成パラダイムにおけるABSA評価に適した包括的ガイドラインの整備にある。
論文 参考訳(メタデータ) (2024-04-17T16:33:22Z) - Unified Language-driven Zero-shot Domain Adaptation [55.64088594551629]
Unified Language-driven Zero-shot Domain Adaptation (ULDA)は、新しいタスクセットである。
これにより、ドメインIDの知識を明示することなく、単一のモデルを多様なターゲットドメインに適応させることができる。
論文 参考訳(メタデータ) (2024-04-10T16:44:11Z) - Exploiting Contextual Target Attributes for Target Sentiment
Classification [53.30511968323911]
TSCの既存のPTLMベースモデルは、1)PTLMをコンテキストエンコーダとして採用した微調整ベースモデル、2)テキスト/単語生成タスクに分類タスクを転送するプロンプトベースモデル、の2つのグループに分類される。
我々は,PTLM を TSC に活用する新たな視点として,言語モデリングと文脈的ターゲット属性による明示的ターゲットコンテキスト相互作用の利点を同時に活用する。
論文 参考訳(メタデータ) (2023-12-21T11:45:28Z) - OATS: Opinion Aspect Target Sentiment Quadruple Extraction Dataset for
Aspect-Based Sentiment Analysis [55.61047894397937]
アスペクトベースの感情分析(ABSA)は、ユーザ生成レビュー内の異なる要素に特有の感情を理解する。
OATSデータセットは3つの新しいドメインを包含し,27,470の文レベルと17,092のレビューレベルから構成される。
私たちのイニシアチブは、レストランやラップトップのようなよく知られたドメイン、複雑な四重項抽出タスクのための限られたデータ、時には文とレビューレベルの感情の相乗効果の監視といった、特定の観察されたギャップを埋めることを目指しています。
論文 参考訳(メタデータ) (2023-09-23T07:39:16Z) - Towards Addressing the Misalignment of Object Proposal Evaluation for
Vision-Language Tasks via Semantic Grounding [36.03994217853856]
Vision-Language (VL)タスクで生成されたオブジェクト提案のパフォーマンスは、現在利用可能なすべてのアノテーションで評価されている。
我々の研究は、この現象の研究として役立ち、セマンティックグラウンドディングの有効性を探求し、その効果を緩和する。
提案手法は一貫性があり,画像キャプションの指標と人間のアノテーションによって選択されたアノテーションとのアライメントが大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2023-09-01T02:19:41Z) - BERT-ASC: Auxiliary-Sentence Construction for Implicit Aspect Learning in Sentiment Analysis [4.522719296659495]
本稿ではアスペクト分類とアスペクトベース感情サブタスクに対処する統合フレームワークを提案する。
コーパスのセマンティック情報を用いて暗黙的側面のための補助文を構築する機構を導入する。
次に、BERTはアスペクト自体ではなく、この補助文に応答してアスペクト固有の表現を学ぶことを推奨する。
論文 参考訳(メタデータ) (2022-03-22T13:12:27Z) - PGCD: a position-guied contributive distribution unit for aspect based
sentiment analysis [3.3205853660267635]
位置ガイド型貢献分布(PGCD)ユニットを提案する。
位置依存型コントリビューションパターンを実現し、ABSAタスクのアスペクト関連ステートメント特徴を生成する。
論文 参考訳(メタデータ) (2021-08-11T08:43:13Z) - Positioning yourself in the maze of Neural Text Generation: A
Task-Agnostic Survey [54.34370423151014]
本稿では, ストーリーテリング, 要約, 翻訳など, 世代ごとのタスクインパクトをリレーする手法の構成要素について検討する。
本稿では,学習パラダイム,事前学習,モデリングアプローチ,復号化,各分野における重要な課題について,命令的手法の抽象化を提案する。
論文 参考訳(メタデータ) (2020-10-14T17:54:42Z) - Detecting Ongoing Events Using Contextual Word and Sentence Embeddings [110.83289076967895]
本稿では,OED(Ongoing Event Detection)タスクを紹介する。
目的は、歴史、未来、仮説、あるいは新しいものでも現在のものでもない他の形式や出来事に対してのみ、進行中のイベントの言及を検出することである。
構造化されていないテキストから進行中のイベントに関する構造化情報を抽出する必要があるアプリケーションは、OEDシステムを利用することができる。
論文 参考訳(メタデータ) (2020-07-02T20:44:05Z) - A Revised Generative Evaluation of Visual Dialogue [80.17353102854405]
本稿では,VisDialデータセットの改訂評価手法を提案する。
モデルが生成した回答と関連する回答の集合のコンセンサスを測定する。
DenseVisDialとして改訂された評価スキームのこれらのセットとコードをリリースする。
論文 参考訳(メタデータ) (2020-04-20T13:26:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。