論文の概要: Prioritized SIPP for Multi-Agent Path Finding With Kinematic Constraints
- arxiv url: http://arxiv.org/abs/2108.05145v1
- Date: Wed, 11 Aug 2021 10:42:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-12 13:19:02.521044
- Title: Prioritized SIPP for Multi-Agent Path Finding With Kinematic Constraints
- Title(参考訳): 運動性制約によるマルチエージェントパスの優先順位付けSIPP
- Authors: Zain Alabedeen Ali and Konstantin Yakovlev
- Abstract要約: MAPF(Multi-Agent Path Finding)は、ロボティクスと人工知能における長年の問題である。
この問題をある程度緩和する手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-Agent Path Finding (MAPF) is a long-standing problem in Robotics and
Artificial Intelligence in which one needs to find a set of collision-free
paths for a group of mobile agents (robots) operating in the shared workspace.
Due to its importance, the problem is well-studied and multiple optimal and
approximate algorithms are known. However, many of them abstract away from the
kinematic constraints and assume that the agents can accelerate/decelerate
instantaneously. This complicates the application of the algorithms on the real
robots. In this paper, we present a method that mitigates this issue to a
certain extent. The suggested solver is essentially, a prioritized planner
based on the well-known Safe Interval Path Planning (SIPP) algorithm. Within
SIPP we explicitly reason about the speed and the acceleration thus the
constructed plans directly take kinematic constraints of agents into account.
We suggest a range of heuristic functions for that setting and conduct a
thorough empirical evaluation of the suggested algorithm.
- Abstract(参考訳): MAPF(Multi-Agent Path Finding)は、ロボットと人工知能における長年の問題であり、共有ワークスペースで動作している移動体エージェント(ロボット)のグループに対して、衝突のない一連のパスを見つける必要がある。
その重要性から、この問題はよく研究されており、複数の最適および近似アルゴリズムが知られている。
しかし、それらの多くは運動的な制約から抽象化し、エージェントが瞬時に加速/減速できると仮定する。
これにより、実際のロボットへのアルゴリズムの適用が複雑になる。
本稿では,この問題をある程度緩和する手法を提案する。
提案するソルバは,よく知られたsafe interval path planning (sipp)アルゴリズムに基づく優先順位付きプランナーである。
SIPP内では、速度と加速度について明確に推論し、構築された計画がエージェントの運動的制約を直接考慮する。
そこで本研究では,提案アルゴリズムの包括的評価を行うため,様々なヒューリスティック関数を提案する。
関連論文リスト
- Accelerating Search-Based Planning for Multi-Robot Manipulation by Leveraging Online-Generated Experiences [20.879194337982803]
MAPF(Multi-Agent Path-Finding)アルゴリズムは、離散的な2Dドメインで保証され、厳密な保証を提供する。
本稿では,その反復的かつ漸進的な性質を活用して,競合に基づく探索アルゴリズムを高速化する手法を提案する。
論文 参考訳(メタデータ) (2024-03-29T20:31:07Z) - FootstepNet: an Efficient Actor-Critic Method for Fast On-line Bipedal Footstep Planning and Forecasting [0.0]
本研究では,障害物のある環境下を移動するための効率的なフットステップ計画法を提案する。
また,地域目標の異なる候補に到達するのに必要なステップ数を素早く推定できる予測手法を提案する。
本研究は,RoboCup 2023コンペティションにおいて,シミュレーション結果と,子供サイズのヒューマノイドロボットへの展開によるアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-19T09:48:18Z) - A Conflict-Aware Optimal Goal Assignment Algorithm for Multi-Robot
Systems [6.853165736531941]
マルチロボットアプリケーションは、衝突のない経路を確保しながら、各ロボットにユニークな目標を割り当てることを目的としている。
そこで本研究では,次の最適な割り当てを計算するための効率的な競合誘導手法を提案する。
複数のベンチマークワークスペース上で,最大100個のロボットに対して,我々のアルゴリズムを広範囲に評価した。
論文 参考訳(メタデータ) (2024-02-19T19:04:19Z) - Scalable Mechanism Design for Multi-Agent Path Finding [87.40027406028425]
MAPF (Multi-Agent Path Finding) は、複数のエージェントが同時に移動し、与えられた目標地点に向かって共有領域を通って衝突しない経路を決定する。
最適解を見つけることは、しばしば計算不可能であり、近似的な準最適アルゴリズムを用いることが不可欠である。
本稿では、MAPFのスケーラブルな機構設計の問題を紹介し、MAPFアルゴリズムを近似した3つの戦略防御機構を提案する。
論文 参考訳(メタデータ) (2024-01-30T14:26:04Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
我々は,エージェントが訓練中に学習する抽象的な検索空間において,エージェントが計画することを可能にする,PiZeroと呼ばれる新しい手法を提案する。
本研究では,旅行セールスマン問題,ソコバン問題,2048年,施設立地問題,パックマン問題など,複数の分野で評価を行った。
論文 参考訳(メタデータ) (2023-08-16T22:47:16Z) - Safe Interval Path Planning With Kinodynamic Constraints [0.0]
元のSIPPアルゴリズムは、エージェントが即座に停止できるという仮定に依存している。
本稿では,加速/減速を伴う計画に最適で,確実に完全であるSIPPの新たな変種を紹介する。
論文 参考訳(メタデータ) (2023-02-01T22:15:58Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
移動, 把握, 接触問題を同時に解くための効率的な運動計画フレームワークを提案する。
ハードウェア実験において提案手法を実証し, より短い計画時間で, 傾斜角45degで自由クライミングを含む様々な動作を実現できることを示す。
論文 参考訳(メタデータ) (2022-07-04T13:52:10Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
オンラインアルゴリズム選択(OAS)では、アルゴリズム問題クラスのインスタンスがエージェントに次々に提示され、エージェントは、固定された候補アルゴリズムセットから、おそらく最高のアルゴリズムを迅速に選択する必要がある。
SAT(Satisfiability)のような決定問題に対して、品質は一般的にアルゴリズムのランタイムを指す。
本研究では,OASのマルチアームバンディットアルゴリズムを再検討し,この問題に対処する能力について議論する。
ランタイム指向の損失に適応し、時間的地平線に依存しない空間的・時間的複雑さを維持しながら、部分的に検閲されたデータを可能にする。
論文 参考訳(メタデータ) (2021-09-13T18:10:52Z) - Sparsification for Fast Optimal Multi-Robot Path Planning in Lazy
Compilation Schemes [7.766921168069532]
複数のロボット(MRPP)の経路計画は、ロボットが最初の位置から指定された目標位置までナビゲートできる非衝突経路を見つけるタスクを表します。
本稿では,既存の SAT ベースの MRPP アルゴリズムを,対象の Boolean 符号化を導出する各ロボットの候補経路の集合を分割することで拡張する。
論文 参考訳(メタデータ) (2021-03-08T00:57:42Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Dynamic Multi-Robot Task Allocation under Uncertainty and Temporal
Constraints [52.58352707495122]
本稿では,不確実性およびマルチエージェント協調の下での逐次意思決定における重要な計算課題を分離するマルチロボット割当アルゴリズムを提案する。
都市におけるマルチアームコンベヤベルトピック・アンド・プレイスとマルチドローン配送ディスパッチの2つの異なる領域における広範囲なシミュレーション結果について検証を行った。
論文 参考訳(メタデータ) (2020-05-27T01:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。