論文の概要: Instance-weighted Central Similarity for Multi-label Image Retrieval
- arxiv url: http://arxiv.org/abs/2108.05274v1
- Date: Wed, 11 Aug 2021 15:18:18 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-12 13:26:34.263296
- Title: Instance-weighted Central Similarity for Multi-label Image Retrieval
- Title(参考訳): マルチラベル画像検索におけるインスタンス重み付け中心類似性
- Authors: Zhiwei Zhang and Hanyu Peng and Hongsheng Li
- Abstract要約: ハッシュコードに対応する中心重みを自動的に学習するために,インスタンス重み付き中央類似度(ICS)を提案する。
特にMS COCOデータセットのmAPを1.6%-6.4%改善する。
- 参考スコア(独自算出の注目度): 66.23348499938278
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep hashing has been widely applied to large-scale image retrieval by
encoding high-dimensional data points into binary codes for efficient
retrieval. Compared with pairwise/triplet similarity based hash learning,
central similarity based hashing can more efficiently capture the global data
distribution. For multi-label image retrieval, however, previous methods only
use multiple hash centers with equal weights to generate one centroid as the
learning target, which ignores the relationship between the weights of hash
centers and the proportion of instance regions in the image. To address the
above issue, we propose a two-step alternative optimization approach,
Instance-weighted Central Similarity (ICS), to automatically learn the center
weight corresponding to a hash code. Firstly, we apply the maximum entropy
regularizer to prevent one hash center from dominating the loss function, and
compute the center weights via projection gradient descent. Secondly, we update
neural network parameters by standard back-propagation with fixed center
weights. More importantly, the learned center weights can well reflect the
proportion of foreground instances in the image. Our method achieves the
state-of-the-art performance on the image retrieval benchmarks, and especially
improves the mAP by 1.6%-6.4% on the MS COCO dataset.
- Abstract(参考訳): 高速検索のために高次元データポイントをバイナリコードに符号化することで、大規模画像検索に広く応用されている。
ペアワイズ/トリップレット類似度に基づくハッシュ学習と比較して、中央類似度に基づくハッシュ処理は、グローバルデータ分布をより効率的に捉えることができる。
しかし,複数ラベル画像検索では,画像中のハッシュ中心の重みとインスタンス領域の比率の関係を無視する学習対象として,同一の重みを持つ複数のハッシュ中心のみを用いて1セントロイドを生成する手法が提案されている。
本稿では,2段階最適化手法であるインスタンス重み付き中央類似性(ics)を提案し,ハッシュコードに対応する中心重みを自動的に学習する。
まず, 最大エントロピー正規化器を用いて, 1つのハッシュ中心が損失関数を支配できないようにし, 投射勾配勾配による中心重みの計算を行う。
次に、固定中心重み付き標準バックプロパゲーションによりニューラルネットワークパラメータを更新する。
さらに重要なことに、学習された中心重みは画像の前景のインスタンスの割合をよく反映することができる。
本手法は,画像検索ベンチマークにおいて最先端の性能を達成し,特にms cocoデータセット上で1.6%-6.4%改善する。
関連論文リスト
- A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
サブセット選択は、トレーニングデータの小さな部分を特定する上で重要な役割を果たす、基本的な問題である。
我々は,k中心および不確かさサンプリング目的関数の重み付け和に基づいて,サブセットを計算する新しい係数3近似アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-12-17T04:41:07Z) - Central Similarity Multi-View Hashing for Multimedia Retrieval [14.766486538338498]
本稿では,CSMVH(Central similarity Multi-View Hashing)法を提案する。
MS COCO と NUS-WIDE では,提案したCSMVH は最先端の手法よりも大きなマージンで性能が向上する。
論文 参考訳(メタデータ) (2023-08-26T05:43:29Z) - Weighted Contrastive Hashing [11.14153532458873]
教師なしハッシュ開発は、世界限定の画像表現に基づくデータ類似性マイニングの不足によって妨げられている。
本稿では,欠落した画像構造によって引き起こされるネットワーク特徴における情報非対称性の問題を軽減するために,新たな相互注意モジュールを提案する。
深い画像関係を反映した集約重み付き類似性を蒸留し、蒸留損失を伴うハッシュコード学習を容易にする。
論文 参考訳(メタデータ) (2022-09-28T13:47:33Z) - CgAT: Center-Guided Adversarial Training for Deep Hashing-Based
Retrieval [12.421908811085627]
我々は、深層ハッシュネットワークの繰り返しを改善するために、min-maxベースのCenter-guided Adversarial Training(CgAT)を提案する。
CgATは、ハミング距離を中心符号に最小化することで、敵対的なサンプルの効果を緩和することを学ぶ。
現状の防御法と比較して, 防御性能は平均18.61%向上した。
論文 参考訳(メタデータ) (2022-04-18T04:51:08Z) - LEAD: Self-Supervised Landmark Estimation by Aligning Distributions of
Feature Similarity [49.84167231111667]
自己監督型ランドマーク検出における既存の研究は、画像から高密度(ピクセルレベルの)特徴表現を学習することに基づいている。
自己教師付き方式で高密度同変表現の学習を強化するアプローチを提案する。
機能抽出器にそのような先行性があることは,アノテーションの数が大幅に制限されている場合でも,ランドマーク検出に役立ちます。
論文 参考訳(メタデータ) (2022-04-06T17:48:18Z) - Improved Deep Classwise Hashing With Centers Similarity Learning for
Image Retrieval [19.052163348920512]
本論文では,ハッシュ学習とクラスセンター学習を同時に実現する深層型ハッシュ法を提案する。
提案手法は当初の手法を上回り、最先端のベースラインを上回ります。
論文 参考訳(メタデータ) (2021-03-17T05:01:13Z) - Determinantal consensus clustering [77.34726150561087]
本稿では,クラスタリングアルゴリズムのランダム再起動における決定点プロセス (DPP) の利用を提案する。
DPPは部分集合内の中心点の多様性を好んでいる。
DPPとは対照的に、この手法は多様性の確保と、すべてのデータフェースについて良好なカバレッジを得るために失敗することを示す。
論文 参考訳(メタデータ) (2021-02-07T23:48:24Z) - Attention-based Saliency Hashing for Ophthalmic Image Retrieval [7.6609890269360505]
光学画像を表すコンパクトハッシュ符号を学習するための注意ベースの Saliency Hashing (ASH) を提案する。
ASHは空間アテンションモジュールを組み込んで、塩分領域の表現にもっと焦点を合わせます。
ashは最先端のディープハッシュ法に比べて検索性能がさらに向上する。
論文 参考訳(メタデータ) (2020-12-07T06:04:12Z) - CIMON: Towards High-quality Hash Codes [63.37321228830102]
我々はtextbfComprehensive stextbfImilarity textbfMining と ctextbfOnsistency leartextbfNing (CIMON) という新しい手法を提案する。
まず、グローバルな洗練と類似度統計分布を用いて、信頼性とスムーズなガイダンスを得る。第二に、意味的整合性学習とコントラスト的整合性学習の両方を導入して、乱不変と差別的ハッシュコードの両方を導出する。
論文 参考訳(メタデータ) (2020-10-15T14:47:14Z) - Reinforcing Short-Length Hashing [61.75883795807109]
既存の手法は、非常に短いハッシュコードを用いた検索性能が劣っている。
本研究では, 短寿命ハッシュ(RSLH)を改良する新しい手法を提案する。
本稿では,ハッシュ表現とセマンティックラベルの相互再構成を行い,セマンティック情報を保存する。
3つの大規模画像ベンチマークの実験は、様々な短いハッシュシナリオ下でのRSLHの優れた性能を示す。
論文 参考訳(メタデータ) (2020-04-24T02:23:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。