論文の概要: Are Negative Samples Necessary in Entity Alignment? An Approach with
High Performance, Scalability and Robustness
- arxiv url: http://arxiv.org/abs/2108.05278v1
- Date: Wed, 11 Aug 2021 15:20:41 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-12 13:20:44.968160
- Title: Are Negative Samples Necessary in Entity Alignment? An Approach with
High Performance, Scalability and Robustness
- Title(参考訳): エンティティアライメントには負のサンプルが必要か?
高性能,スケーラビリティ,堅牢性を備えたアプローチ
- Authors: Xin Mao, Wenting Wang, Yuanbin Wu, Man Lan
- Abstract要約: 本稿では,高パフォーマンス,高スケーラビリティ,高ロバスト性を実現する3つの新しいコンポーネントを持つ新しいEA手法を提案する。
提案手法の有効性と有効性を検討するために,いくつかの公開データセットについて詳細な実験を行った。
- 参考スコア(独自算出の注目度): 26.04006507181558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entity alignment (EA) aims to find the equivalent entities in different KGs,
which is a crucial step in integrating multiple KGs. However, most existing EA
methods have poor scalability and are unable to cope with large-scale datasets.
We summarize three issues leading to such high time-space complexity in
existing EA methods: (1) Inefficient graph encoders, (2) Dilemma of negative
sampling, and (3) "Catastrophic forgetting" in semi-supervised learning. To
address these challenges, we propose a novel EA method with three new
components to enable high Performance, high Scalability, and high Robustness
(PSR): (1) Simplified graph encoder with relational graph sampling, (2)
Symmetric negative-free alignment loss, and (3) Incremental semi-supervised
learning. Furthermore, we conduct detailed experiments on several public
datasets to examine the effectiveness and efficiency of our proposed method.
The experimental results show that PSR not only surpasses the previous SOTA in
performance but also has impressive scalability and robustness.
- Abstract(参考訳): エンティティアライメント(EA)は、複数のKGを統合する上で重要なステップである、異なるKGに等価なエンティティを見つけることを目的としている。
しかし、既存のeaメソッドの多くはスケーラビリティが悪く、大規模なデータセットに対応できない。
我々は,(1)非効率的なグラフエンコーダ,(2)負のサンプリングのジレンマ,(3)半教師あり学習における「破滅的な忘れ」という3つの課題を要約する。
これらの課題に対処するため,我々は,(1)関係グラフサンプリングによる簡易グラフエンコーダ,(2)対称負非アライメント損失,(3)漸進的半教師付き学習という,高性能,高スケーラビリティ,高ロバスト性(psr)を実現するための3つの新しいコンポーネントを用いた新しいea手法を提案する。
さらに,提案手法の有効性と有効性を検討するため,いくつかの公開データセットについて詳細な実験を行った。
実験の結果,PSRは従来のSOTAを超えるだけでなく,スケーラビリティや堅牢性にも優れていた。
関連論文リスト
- Decoupled and Interactive Regression Modeling for High-performance One-stage 3D Object Detection [8.531052087985097]
回帰タスクにおけるバウンディングボックスモデリングの不十分さは、1段階の3Dオブジェクト検出の性能を制約する。
一段階検出のための疎結合・インタラクティブ回帰モデリング(DIRM)を提案する。
論文 参考訳(メタデータ) (2024-09-01T10:47:22Z) - When hard negative sampling meets supervised contrastive learning [17.173114048398947]
我々は、微調整フェーズ中にハードネガティブサンプリングを組み込んだ新しい教師付きコントラスト学習目標であるSCHaNeを導入する。
SchaNeは、様々なベンチマークで、トップ1の精度で強いベースラインBEiT-3を上回っている。
提案手法は,ImageNet-1kのベースモデルに対して,86.14%の精度で新たな最先端技術を実現する。
論文 参考訳(メタデータ) (2023-08-28T20:30:10Z) - ContrasInver: Ultra-Sparse Label Semi-supervised Regression for
Multi-dimensional Seismic Inversion [7.356328937024184]
コントラインバー(ContrasInver)は、2、3個の井戸の丸太を用いて地震波の逆解析を行う手法である。
実験では、ContrasInverは合成データSEAM Iで最先端の性能を達成した。
オランダのF3とDelftでは,それぞれ3つと2つの井戸ログのみを使用して,信頼性の高い結果をもたらす,初めてのデータ駆動型アプローチである。
論文 参考訳(メタデータ) (2023-02-13T15:19:51Z) - Open-Set Semi-Supervised Learning for 3D Point Cloud Understanding [62.17020485045456]
半教師付き学習(SSL)では、ラベル付きデータと同じ分布からラベル付きデータが引き出されることが一般的である。
サンプル重み付けによりラベルなしデータを選択的に活用することを提案する。
論文 参考訳(メタデータ) (2022-05-02T16:09:17Z) - Scale-Equivalent Distillation for Semi-Supervised Object Detection [57.59525453301374]
近年のSemi-Supervised Object Detection (SS-OD) 法は主に自己学習に基づいており、教師モデルにより、ラベルなしデータを監視信号としてハードな擬似ラベルを生成する。
実験結果から,これらの手法が直面する課題を分析した。
本稿では,大規模オブジェクトサイズの分散とクラス不均衡に頑健な簡易かつ効果的なエンド・ツー・エンド知識蒸留フレームワークであるSED(Scale-Equivalent Distillation)を提案する。
論文 参考訳(メタデータ) (2022-03-23T07:33:37Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - Guided Point Contrastive Learning for Semi-supervised Point Cloud
Semantic Segmentation [90.2445084743881]
そこで本研究では,モデル性能を向上させるために,未ラベルの点群をトレーニングに採用するための半教師付き点群セマンティックセマンティックセマンティックセマンティクスを提案する。
近年の自己監督型タスクのコントラスト損失に触発されて,特徴表現とモデル一般化能力を高めるためのガイド付きポイントコントラスト損失を提案する。
論文 参考訳(メタデータ) (2021-10-15T16:38:54Z) - Structure-Aware Hard Negative Mining for Heterogeneous Graph Contrastive
Learning [21.702342154458623]
本稿では,グラフニューラルネットワーク(GNN)におけるコントラスト学習(CL)について検討する。
まず、メタパスとネットワークスキーマに基づいて複数のセマンティックビューを生成します。
次に、異なるセマンティックビューに対応するノードの埋め込み(陽性)を押して、他の埋め込み(負)を引き離します。
複雑なグラフ構造とGNNの滑らかな性質を考慮し,構造を考慮した強負のマイニング手法を提案する。
論文 参考訳(メタデータ) (2021-08-31T14:44:49Z) - WSSOD: A New Pipeline for Weakly- and Semi-Supervised Object Detection [75.80075054706079]
弱機能および半教師付きオブジェクト検出フレームワーク(WSSOD)を提案する。
エージェント検出器は、まず関節データセット上でトレーニングされ、弱注釈画像上で擬似境界ボックスを予測するために使用される。
提案フレームワークはPASCAL-VOC と MSCOCO のベンチマークで顕著な性能を示し,完全教師付き環境で得られたものと同等の性能を達成している。
論文 参考訳(メタデータ) (2021-05-21T11:58:50Z) - Enhanced Principal Component Analysis under A Collaborative-Robust
Framework [89.28334359066258]
重み学習とロバストな損失を非自明な方法で組み合わせる,一般的な協調ロバスト重み学習フレームワークを提案する。
提案されたフレームワークでは、トレーニング中の重要度を示す適切なサンプルの一部のみがアクティブになり、エラーが大きい他のサンプルは無視されません。
特に、不活性化試料の負の効果はロバスト損失関数によって軽減される。
論文 参考訳(メタデータ) (2021-03-22T15:17:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。