論文の概要: Aspect Sentiment Triplet Extraction Using Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2108.06107v1
- Date: Fri, 13 Aug 2021 07:38:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-16 18:50:09.998878
- Title: Aspect Sentiment Triplet Extraction Using Reinforcement Learning
- Title(参考訳): 強化学習を用いたアスペクト感情三重項抽出
- Authors: Samson Yu Bai Jian, Tapas Nayak, Navonil Majumder, and Soujanya Poria
- Abstract要約: 本稿では、表現された感情の議論として、アスペクトと意見項に関する新しいパラダイムASTE-RLを提案する。
まず、文章で表現された感情に注目し、その感情に対する対象的側面と意見条件を特定します。
このことは、探索とサンプル効率を改善しながら、三重項の成分間の相互相互作用を考慮に入れている。
- 参考スコア(独自算出の注目度): 14.21689018940387
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Aspect Sentiment Triplet Extraction (ASTE) is the task of extracting triplets
of aspect terms, their associated sentiments, and the opinion terms that
provide evidence for the expressed sentiments. Previous approaches to ASTE
usually simultaneously extract all three components or first identify the
aspect and opinion terms, then pair them up to predict their sentiment
polarities. In this work, we present a novel paradigm, ASTE-RL, by regarding
the aspect and opinion terms as arguments of the expressed sentiment in a
hierarchical reinforcement learning (RL) framework. We first focus on
sentiments expressed in a sentence, then identify the target aspect and opinion
terms for that sentiment. This takes into account the mutual interactions among
the triplet's components while improving exploration and sample efficiency.
Furthermore, this hierarchical RLsetup enables us to deal with multiple and
overlapping triplets. In our experiments, we evaluate our model on existing
datasets from laptop and restaurant domains and show that it achieves
state-of-the-art performance. The implementation of this work is publicly
available at https://github.com/declare-lab/ASTE-RL.
- Abstract(参考訳): Aspect Sentiment Triplet extract (ASTE) は、アスペクト用語、関連する感情、表現された感情の証拠を提供する意見用語を抽出するタスクである。
ASTEの以前のアプローチでは、通常は3つのコンポーネントを同時に抽出するか、まずアスペクトと意見の項を識別し、それらを組み合わせて感情の極性を予測する。
本稿では、階層的強化学習(RL)フレームワークにおける表現された感情の議論として、アスペクトと意見項に関する新しいパラダイムASTE-RLを提案する。
まず、文章で表現された感情に注目し、その感情のターゲットとなる側面と意見の言葉を特定します。
これはトリプレットのコンポーネント間の相互相互作用を考慮し、探索とサンプル効率を改善している。
さらに、この階層的なRLsetupにより、複数の重なり合う三重項を扱うことができる。
実験では,ラップトップおよびレストランドメインの既存データセットのモデルを評価し,最先端の性能を実現することを示す。
この作業の実装はhttps://github.com/declare-lab/ASTE-RLで公開されている。
関連論文リスト
- ExpLLM: Towards Chain of Thought for Facial Expression Recognition [61.49849866937758]
本研究では,表情認識のための思考の正確な連鎖(CoT)を生成するExpLLMという新しい手法を提案する。
具体的には、重要な観察、全体的な感情解釈、結論の3つの観点から、CoTメカニズムを設計しました。
RAF-DBとAffectNetデータセットの実験では、ExpLLMは現在の最先端のFERメソッドよりも優れています。
論文 参考訳(メタデータ) (2024-09-04T15:50:16Z) - PanoSent: A Panoptic Sextuple Extraction Benchmark for Multimodal Conversational Aspect-based Sentiment Analysis [74.41260927676747]
本稿では,マルチモーダル対話感分析(ABSA)を導入することでギャップを埋める。
タスクをベンチマークするために、手動と自動の両方で注釈付けされたデータセットであるPanoSentを構築し、高品質、大規模、マルチモーダル、マルチ言語主義、マルチシナリオを特徴とし、暗黙の感情要素と明示的な感情要素の両方をカバーする。
課題を効果的に解決するために,新しい多モーダルな大規模言語モデル(すなわちSentica)とパラフレーズベースの検証機構とともに,新しい感覚の連鎖推論フレームワークを考案した。
論文 参考訳(メタデータ) (2024-08-18T13:51:01Z) - Prompt Based Tri-Channel Graph Convolution Neural Network for Aspect
Sentiment Triplet Extraction [63.0205418944714]
Aspect Sentiment Triplet extract (ASTE)は、ある文の三つ子を抽出する新しいタスクである。
近年の研究では、単語関係を二次元テーブルにエンコードするテーブル充填パラダイムを用いてこの問題に対処する傾向にある。
本稿では, 関係表をグラフに変換し, より包括的な関係情報を探索する, Prompt-based Tri-Channel Graph Convolution Neural Network (PT-GCN) と呼ばれるASTEタスクの新しいモデルを提案する。
論文 参考訳(メタデータ) (2023-12-18T12:46:09Z) - A Pairing Enhancement Approach for Aspect Sentiment Triplet Extraction [3.5838781091072143]
Aspect Sentiment Triplet extractは、アスペクト項、意見項、およびそれらの対応する感情極性の三重項をレビューテキストから抽出することを目的としている。
言語の複雑さと一つの文に複数のアスペクト項と意見項が存在するため、現在のモデルはアスペクト項とそれを記述する意見項の関連を混乱させることが多い。
本稿では,三重項抽出モデルにアスペクト対ペアリング知識を注入するために,訓練段階におけるコントラスト学習を取り入れたASTEのペアリング強化手法を提案する。
論文 参考訳(メタデータ) (2023-06-11T07:32:10Z) - Instruction Tuning for Few-Shot Aspect-Based Sentiment Analysis [72.9124467710526]
生成的アプローチは、テキストから(1つ以上の)4つの要素を1つのタスクとして抽出するために提案されている。
本稿では,ABSAを解くための統一的なフレームワークと,それに関連するサブタスクを提案する。
論文 参考訳(メタデータ) (2022-10-12T23:38:57Z) - Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction [25.984894351763945]
Aspect Sentiment Triplet extract (ASTE)はABSAの最新のサブタスクである。
最近のモデルはエンドツーエンドで三重項抽出を行うが、それぞれの単語と意見語間の相互作用に強く依存している。
提案するスパンレベルアプローチは,感情関係を予測する際に,対象の全体と意見の相互作用を明示的に検討する。
論文 参考訳(メタデータ) (2021-07-26T13:47:31Z) - A More Fine-Grained Aspect-Sentiment-Opinion Triplet Extraction Task [19.101354902943154]
よりきめ細かいAspect-Sentiment-Opinion Triplet Extraction Taskを紹介します。
ASOTEが抽出した三重項の感情は、アスペクト項と意見項ペアの感情である。
いくつかの一般的なABSAベンチマークに基づいて、ASOTE用の4つのデータセットを構築します。
論文 参考訳(メタデータ) (2021-03-29T00:42:51Z) - Bidirectional Machine Reading Comprehension for Aspect Sentiment Triplet
Extraction [8.208671244754317]
アスペクトセンチメントトリプレット抽出(ASTE)は、きめ細かいオピニオンマイニングの新たなタスクです。
我々はASTEタスクをマルチターン機械読解(MTMRC)タスクに変換する。
本稿では,この課題に対処する双方向MRC(BMRC)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-13T09:30:47Z) - Opinion Transmission Network for Jointly Improving Aspect-oriented
Opinion Words Extraction and Sentiment Classification [56.893393134328996]
アスペクトレベルの感情分類(ALSC)とアスペクト指向の意見単語抽出(AOWE)は、アスペクトベースの感情分析の2つのサブタスクである。
本稿では,ALSC と AOWE の橋梁を利用した新しい接続モデル Opinion Transmission Network (OTN) を提案する。
論文 参考訳(メタデータ) (2020-11-01T11:00:19Z) - Position-Aware Tagging for Aspect Sentiment Triplet Extraction [37.76744150888183]
Aspect Sentiment Triplet extract (ASTE) は、対象エンティティのトリプルを抽出するタスクであり、その感情の理由を説明する。
我々の観察では、三重項内の3つの要素は互いに非常に関連しており、このような三重項を抽出するジョイントモデルを構築する動機となっている。
本稿では,三つ子を共同抽出可能な新しい位置認識型タグ付け方式による最初のエンドツーエンドモデルを提案する。
論文 参考訳(メタデータ) (2020-10-06T10:40:34Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。