論文の概要: Sentiment Analysis of the COVID-related r/Depression Posts
- arxiv url: http://arxiv.org/abs/2108.06215v1
- Date: Wed, 28 Jul 2021 15:47:26 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-22 16:49:24.977435
- Title: Sentiment Analysis of the COVID-related r/Depression Posts
- Title(参考訳): ウイルス関連r/抑うつポストの感度解析
- Authors: Zihan Chen, Marina Sokolova
- Abstract要約: 本研究では、r/depressionに投稿された新型コロナウイルス関連メッセージの感情を分析した。
a) Redditユーザーが議論する一般的なトピックは何ですか? b) これらのトピックを使って投稿の感情を分類できますか?
- 参考スコア(独自算出の注目度): 2.5635916273693558
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reddit.com is a popular social media platform among young people. Reddit
users share their stories to seek support from other users, especially during
the Covid-19 pandemic. Messages posted on Reddit and their content have
provided researchers with opportunity to analyze public concerns. In this
study, we analyzed sentiments of COVID-related messages posted on r/Depression.
Our study poses the following questions: a) What are the common topics that the
Reddit users discuss? b) Can we use these topics to classify sentiments of the
posts? c) What matters concern people more during the pandemic?
Key Words: Sentiment Classification, Depression, COVID-19, Reddit, LDA, BERT
- Abstract(参考訳): Reddit.comは若者の間で人気のあるソーシャルメディアプラットフォームである。
Redditユーザーは、特にCovid-19パンデミックの間、他のユーザーからの支持を求めるストーリーを共有している。
redditに投稿されたメッセージとそのコンテンツは、研究者に公衆の懸念を分析する機会を提供した。
本研究では、r/depressionに投稿された新型コロナウイルス関連メッセージの感情を分析した。
a) Redditユーザが議論する一般的なトピックは何ですか?
b)これらのトピックを使って投稿の感情を分類できますか。
c)パンデミックの間、人々の関心が高まるのは何か。
キーワード:センチメント分類、抑うつ、COVID-19、Reddit、LDA、BERT
関連論文リスト
- "Here's Your Evidence": False Consensus in Public Twitter Discussions of COVID-19 Science [50.08057052734799]
プリプリントサーバからの抽象化のサンプルに基づいて,科学的コンセンサスを推定する。
アンチ・コンセンサス(反合意)の投稿や利用者は、概してプロ・コンセンサス(反合意)の投稿ほど多くはないが、Twitter上では圧倒的に過剰に表現されている。
論文 参考訳(メタデータ) (2024-01-24T06:16:57Z) - Exploring a Hybrid Deep Learning Framework to Automatically Discover
Topic and Sentiment in COVID-19 Tweets [2.3940819037450987]
新型コロナウイルスは、世界的な公衆衛生問題や、経済危機、失業、精神的苦痛などの問題を引き起こしている。
このパンデミックは世界中で致命的であり、多くの人々が感染症だけでなく、問題、ストレス、不思議、恐怖、恨み、憎しみに悩まされている。
Twitterは、非常に影響力のあるソーシャルメディアプラットフォームであり、健康関連情報、ニュース、意見、世論などの重要な情報源である。
論文 参考訳(メタデータ) (2023-12-02T16:58:17Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
ソーシャルメディア投稿からの抑うつ検出のための奥深いアーキテクチャを提案する。
我々は、後期融合方式を用いて、ポストとワードの敬称と道徳的特徴をアーキテクチャに組み込んだ。
提案された機能を含めると、両方の設定で最先端の結果が得られます。
論文 参考訳(メタデータ) (2023-03-24T21:26:27Z) - Why Do You Feel This Way? Summarizing Triggers of Emotions in Social
Media Posts [61.723046082145416]
CovidET (Emotions and their Triggers during Covid-19)は、COVID-19に関連する英国のReddit投稿1,900件のデータセットである。
我々は、感情を共同で検出し、感情のトリガーを要約する強力なベースラインを開発する。
分析の結果,コビデットは感情特異的要約における新たな課題と,長文のソーシャルメディア投稿におけるマルチ感情検出の課題が示唆された。
論文 参考訳(メタデータ) (2022-10-22T19:10:26Z) - Know it to Defeat it: Exploring Health Rumor Characteristics and
Debunking Efforts on Chinese Social Media during COVID-19 Crisis [65.74516068984232]
われわれは、中国のマイクロブログサイトWeiboで、新型コロナウイルス(COVID-19)に関する4ヶ月にわたる噂に関するオンラインディスカッションを包括的に分析した。
以上の結果から、不安(恐怖)型健康噂は、希望(希望)型よりもはるかに多くの議論を巻き起こし、長く続いたことが示唆された。
本稿では,噂の議論を抑えるためのデバンキングの有効性を示す。
論文 参考訳(メタデータ) (2021-09-25T14:02:29Z) - Textual Analysis of Communications in COVID-19 Infected Community on
Social Media [8.243563562508466]
新型コロナウイルスのパンデミックの間、人々はソーシャルメディアでパンデミック関連のトピックについて議論し始めました。
本研究では,言語学的観点から,サブレディットに関する議論の性質について理解しようと試みる。
3つの異なるカテゴリーの話題にまたがる言語特性の違いを見出した。
論文 参考訳(メタデータ) (2021-05-03T22:09:35Z) - COVID-19 and Mental Health/Substance Use Disorders on Reddit: A
Longitudinal Study [3.7985411513045113]
新型コロナウイルス(COVID-19)のパンデミックは、精神疾患や薬物使用の問題に苦しむ人々に悪影響を及ぼしている。
パンデミックとメンタルヘルスや物質使用障害に関連する社会的汚職は、人々が自分の苦労を共有するのに消極的になっている。
ソーシャルメディアは、人々が日々の闘いについて経験を共有するための便利な媒体として登場した。
論文 参考訳(メタデータ) (2020-11-20T17:23:49Z) - COVID-19 Pandemic: Identifying Key Issues using Social Media and Natural
Language Processing [14.54689130381201]
ソーシャルメディアデータは、パンデミックに対する大衆の認識と経験を明らかにすることができる。
われわれは6つのソーシャルメディアプラットフォームから集めた新型コロナウイルス関連コメントを分析した。
我々は、34の負のテーマを特定し、そのうち17は経済的、社会政治的、教育的、政治的問題である。
論文 参考訳(メタデータ) (2020-08-23T12:05:12Z) - Detecting Topic and Sentiment Dynamics Due to COVID-19 Pandemic Using
Social Media [14.662523926129117]
大規模なソーシャルメディア投稿から、COVID-19による話題や感情のダイナミクスを分析した。
安全な家にいよう」といった話題は肯定的な感情で支配されている。
人の死のような他のものは、常に否定的な感情を示しています。
論文 参考訳(メタデータ) (2020-07-05T12:05:30Z) - Analyzing COVID-19 on Online Social Media: Trends, Sentiments and
Emotions [44.92240076313168]
我々は、2020年1月20日から2020年5月11日までの間に、TwitterとWeiboの投稿に基づいて、アメリカ人と中国人の感情的な軌跡を分析した。
中国と国連の2つの非常に異なる国とは対照的に、異なる文化におけるCOVID-19に対する人々の見解に顕著な違いが浮かび上がっている。
我々の研究は、公共の感情やパンデミックに対する懸念をリアルタイムで明らかにするための計算的アプローチを提供し、政策立案者が人々のニーズをよりよく理解し、それによって最適な政策を立案するのに役立つ可能性がある。
論文 参考訳(メタデータ) (2020-05-29T09:24:38Z) - The Ivory Tower Lost: How College Students Respond Differently than the
General Public to the COVID-19 Pandemic [66.80677233314002]
新型コロナウイルス感染症(COVID-19)のパンデミックは、政府に究極の課題を提示した。
米国では、新型コロナウイルス感染者が最も多い国で、全国的なソーシャルディスタンシングプロトコルが大統領によって実施されている。
本稿では,この対話型社会における前例のない破壊の社会的意義を,ソーシャルメディア上での人々の意見のマイニングによって発見することを目的とする。
論文 参考訳(メタデータ) (2020-04-21T13:02:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。