論文の概要: Context Aware Object Geotagging
- arxiv url: http://arxiv.org/abs/2108.06302v1
- Date: Fri, 13 Aug 2021 16:16:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-16 14:20:05.449579
- Title: Context Aware Object Geotagging
- Title(参考訳): コンテキスト対応オブジェクトジオタグ
- Authors: Chao-Jung Liu, Matej Ulicny, Michael Manzke and Rozenn Dahyot
- Abstract要約: 本研究では,移動構造を用いたストリートビュー画像からの資産配置改善手法を提案する。
OpenStreetMapから抽出した文脈的地理的情報を付与することにより、予測対象の位置情報をさらに洗練する。
- 参考スコア(独自算出の注目度): 2.4674307340652297
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Localization of street objects from images has gained a lot of attention in
recent years. We propose an approach to improve asset geolocation from street
view imagery by enhancing the quality of the metadata associated with the
images using Structure from Motion. The predicted object geolocation is further
refined by imposing contextual geographic information extracted from
OpenStreetMap. Our pipeline is validated experimentally against the state of
the art approaches for geotagging traffic lights.
- Abstract(参考訳): 近年,画像からのストリートオブジェクトの局所化が注目されている。
本研究では,動画像に関連付けられたメタデータの質を高めることにより,ストリートビュー画像からアセットジオロケーションを改善する手法を提案する。
予測対象の位置情報はopenstreetmapから抽出したコンテクスト地理情報によってさらに洗練される。
我々のパイプラインは、交通信号のジオタグ化技術の現状に対して実験的に検証されている。
関連論文リスト
- Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework [51.26566634946208]
smileGeoは、新しい視覚的ジオローカライゼーションフレームワークである。
エージェント間のコミュニケーションによって、SmithGeoはこれらのエージェントの固有の知識と、検索された情報を統合する。
その結果,本手法は現在の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2024-08-21T03:31:30Z) - GeoCLIP: Clip-Inspired Alignment between Locations and Images for
Effective Worldwide Geo-localization [61.10806364001535]
世界規模のジオローカライゼーションは、地球上のどこでも撮影された画像の正確な位置を特定することを目的としている。
既存のアプローチは、地球を離散的な地理的細胞に分割し、問題を分類タスクに変換する。
画像と対応するGPS位置のアライメントを強制する新しいCLIPにインスパイアされた画像-GPS検索手法であるGeoCLIPを提案する。
論文 参考訳(メタデータ) (2023-09-27T20:54:56Z) - Cross-View Visual Geo-Localization for Outdoor Augmented Reality [11.214903134756888]
地上画像のクロスビューマッチングによる測地位置推定の課題をジオレファレンス衛星画像データベースに解決する。
本稿では,新しいトランスフォーマーニューラルネットワークモデルを提案する。
いくつかのベンチマーク・クロスビュー・ジオローカライズ・データセットの実験により、我々のモデルが最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2023-03-28T01:58:03Z) - Where We Are and What We're Looking At: Query Based Worldwide Image
Geo-localization Using Hierarchies and Scenes [53.53712888703834]
地理的レベルの異なる関係を利用して、エンドツーエンドのトランスフォーマーベースのアーキテクチャを導入する。
4つの標準ジオローカライゼーションデータセット上で,アートストリートレベルの精度を実現する。
論文 参考訳(メタデータ) (2023-03-07T21:47:58Z) - G^3: Geolocation via Guidebook Grounding [92.46774241823562]
本研究では,人間が位置情報に用いている視覚的特徴を記述した人書きガイドブックから,明示的な知識について検討する。
多様な場所からのストリートビュー画像のデータセットを用いたガイドブックグラウンディングによるジオロケーションのタスクを提案する。
提案手法は,Top-1の精度が5%以上向上し,最先端の画像のみの位置決め法よりも大幅に向上する。
論文 参考訳(メタデータ) (2022-11-28T16:34:40Z) - Revisiting Near/Remote Sensing with Geospatial Attention [24.565068569913382]
本研究は、地上レベルの補助画像が利用できる場合のオーバーヘッド画像分割の課題に対処する。
近年の研究では、近接・遠隔センシングと呼ばれる2つのモードで共同推論を行うことで、精度が大幅に向上することが示されている。
地平面画像中の画素と地理的位置との地理空間的関係を明確に考察する幾何学的注意機構である地理空間的注意の概念を導入する。
論文 参考訳(メタデータ) (2022-04-04T19:19:50Z) - Accurate 3-DoF Camera Geo-Localization via Ground-to-Satellite Image
Matching [102.39635336450262]
地上で取得したクエリ画像とジオタグ付き衛星画像の大規模データベースとをマッチングすることにより、地上から衛星画像のジオローカライズの問題に対処する。
我々の新しい手法は、衛星画像のピクセルサイズの精度まで、クエリー画像のきめ細かい位置を達成できる。
論文 参考訳(メタデータ) (2022-03-26T20:10:38Z) - Visual and Object Geo-localization: A Comprehensive Survey [11.120155713865918]
ジオローカライゼーション(ジオローカライゼーション)とは、地球上の「ある実体がどこにあるか」を決定する過程のこと。
本稿では、画像の撮影場所(画像ジオローカライゼーション)や画像内の物体の位置決め(オブジェクトジオローカライゼーション)を含む、画像を含む画像の地理的ローカライゼーションに関する包括的調査を行う。
本稿では、一般的なアルゴリズムの要約、提案したデータセットの説明、各分野の現状を説明するためのパフォーマンス結果の分析など、詳細な研究を行う。
論文 参考訳(メタデータ) (2021-12-30T20:46:53Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
移動可能なカメラで撮影された単一の画像で、自己教師付き検出とセグメンテーションのアプローチを導入する。
我々は、提案に基づくセグメンテーションネットワークのトレーニングに利用する自己教師付き損失関数を利用する。
本手法は,標準ベンチマークから視覚的に切り離された画像の人間の検出とセグメント化に応用し,既存の自己監督手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-11T08:34:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。