論文の概要: Detecting OODs as datapoints with High Uncertainty
- arxiv url: http://arxiv.org/abs/2108.06380v1
- Date: Fri, 13 Aug 2021 20:07:42 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-18 11:57:33.154981
- Title: Detecting OODs as datapoints with High Uncertainty
- Title(参考訳): 高不確実性データポイントとしてのOODの検出
- Authors: Ramneet Kaur, Susmit Jha, Anirban Roy, Sangdon Park, Oleg Sokolsky,
Insup Lee
- Abstract要約: ディープニューラルネットワーク(DNN)は、オフ・オブ・ディストリビューション・インプット(OOD)に非常に高い信頼を持つ誤った予測を生成することが知られている。
この制限は、自律運転、航空交通管理、医療診断などの高信頼システムにおけるDNNの採用における重要な課題の1つである。
モデルの予測が信頼できない入力を検出するために、いくつかの技術が開発されている。
我々は,これらの手法の検知能力の違いを実証し,不確実性の高いデータポイントとしてOODを検出するためのアンサンブルアプローチを提案する。
- 参考スコア(独自算出の注目度): 12.040347694782007
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks (DNNs) are known to produce incorrect predictions with
very high confidence on out-of-distribution inputs (OODs). This limitation is
one of the key challenges in the adoption of DNNs in high-assurance systems
such as autonomous driving, air traffic management, and medical diagnosis. This
challenge has received significant attention recently, and several techniques
have been developed to detect inputs where the model's prediction cannot be
trusted. These techniques detect OODs as datapoints with either high epistemic
uncertainty or high aleatoric uncertainty. We demonstrate the difference in the
detection ability of these techniques and propose an ensemble approach for
detection of OODs as datapoints with high uncertainty (epistemic or aleatoric).
We perform experiments on vision datasets with multiple DNN architectures,
achieving state-of-the-art results in most cases.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、オフ・オブ・ディストリビューション・インプット(OOD)に非常に高い信頼性を持つ誤った予測を生成することが知られている。
この制限は、自律運転、航空交通管理、医療診断などの高信頼システムにおけるDNNの採用における重要な課題の1つである。
この課題は最近大きな注目を集めており、モデルの予測が信頼できない入力を検出する技術がいくつか開発されている。
これらの手法は, てんかん性不確実性が高いデータポイントとしてOODを検出する。
我々は,これらの手法の検知能力の違いを実証し,不確実性の高いデータポイントとしてOODを検出するためのアンサンブルアプローチを提案する。
我々は複数のDNNアーキテクチャで視覚データセットの実験を行い、ほとんどのケースで最先端の結果を得る。
関連論文リスト
- Mitigating Overconfidence in Out-of-Distribution Detection by Capturing Extreme Activations [1.8531577178922987]
Overconfidence"は特定のニューラルネットワークアーキテクチャの本質的な性質であり、OOD検出の低さにつながる。
ニューラルネットワークの最後層における極端なアクティベーション値を計測し、この過信のプロキシを利用して、複数のOOD検出ベースラインを改善する。
基準値と比較すると,OOD検出は2桁に増加し,精度が向上することが多い。
論文 参考訳(メタデータ) (2024-05-21T10:14:50Z) - Generalized Out-of-Distribution Detection: A Survey [83.0449593806175]
アウト・オブ・ディストリビューション(OOD)検出は、機械学習システムの信頼性と安全性を確保するために重要である。
その他の問題として、異常検出(AD)、新規検出(ND)、オープンセット認識(OSR)、異常検出(OD)などがある。
まず、上記の5つの問題を含む一般化OOD検出という統合されたフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-21T17:59:41Z) - Confidence Aware Neural Networks for Skin Cancer Detection [12.300911283520719]
画像からの皮膚癌検出における不確かさを定量化する3つの方法を提案する。
その結果, 予測不確実性推定手法は, リスクや誤予測を予測できることがわかった。
また、アンサンブルアプローチは推論によって不確実性を捉える上でより信頼性が高いことを示す。
論文 参考訳(メタデータ) (2021-07-19T19:21:57Z) - Provably Robust Detection of Out-of-distribution Data (almost) for free [124.14121487542613]
ディープニューラルネットワークは、アウト・オブ・ディストリビューション(OOD)データに対する高い過度な予測を生成することが知られている。
本稿では,認証可能なOOD検出器を標準分類器と組み合わせてOOD認識分類器を提案する。
このようにして、我々は2つの世界のベストを達成している。OOD検出は、分布内に近いOODサンプルであっても、予測精度を損なうことなく、非操作型OODデータに対する最先端のOOD検出性能に近接する。
論文 参考訳(メタデータ) (2021-06-08T11:40:49Z) - Interval Deep Learning for Uncertainty Quantification in Safety
Applications [0.0]
現在のディープニューラルネットワーク(DNN)は、重要な入力データの不確実性を定量化し伝播する暗黙のメカニズムを持っていない。
本稿では、間隔解析を用いて入力とパラメータの不確かさを定量化できる勾配法を最適化したDNNを提案する。
本研究では,Deep Interval Neural Network (DINN) が不確定な入力データから正確な有界推定を生成できることを示した。
論文 参考訳(メタデータ) (2021-05-13T17:21:33Z) - Are all outliers alike? On Understanding the Diversity of Outliers for
Detecting OODs [11.211251493663267]
本稿では,不確実性の発生源と性質に基づく OOD アウトプライヤ入力の分類について述べる。
我々は,異なる種類のアウトリーチに対応する複数の属性を用いた新しい統合検出手法を開発した。
論文 参考訳(メタデータ) (2021-03-23T15:33:58Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z) - Learn what you can't learn: Regularized Ensembles for Transductive
Out-of-distribution Detection [76.39067237772286]
ニューラルネットワークの現在のアウト・オブ・ディストリビューション(OOD)検出アルゴリズムは,様々なOOD検出シナリオにおいて不満足な結果をもたらすことを示す。
本稿では,テストデータのバッチを観察した後に検出方法を調整することで,このような「ハード」なOODシナリオがいかに有用かを検討する。
本稿では,テストデータと正規化に人工ラベリング手法を用いて,テストバッチ内のOODサンプルに対してのみ矛盾予測を生成するモデルのアンサンブルを求める手法を提案する。
論文 参考訳(メタデータ) (2020-12-10T16:55:13Z) - Out-of-Distribution Detection for Automotive Perception [58.34808836642603]
ニューラルネットワーク(NN)は、自律運転におけるオブジェクト分類に広く使われている。
NNは、アウト・オブ・ディストリビューション(OOD)データとして知られるトレーニングデータセットで適切に表現されていない入力データでフェールすることができる。
本稿では,OODデータを必要としない入力がOODであるか否かを判定し,推論の計算コストを増大させる方法を提案する。
論文 参考訳(メタデータ) (2020-11-03T01:46:35Z) - NADS: Neural Architecture Distribution Search for Uncertainty Awareness [79.18710225716791]
機械学習(ML)システムは、トレーニングデータとは異なるディストリビューションから来るテストデータを扱う場合、しばしばOoD(Out-of-Distribution)エラーに遭遇する。
既存のOoD検出アプローチはエラーを起こしやすく、時にはOoDサンプルに高い確率を割り当てることもある。
本稿では,すべての不確実性を考慮したアーキテクチャの共通構築ブロックを特定するために,ニューラルアーキテクチャ分布探索(NADS)を提案する。
論文 参考訳(メタデータ) (2020-06-11T17:39:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。