論文の概要: Appropriate Fairness Perceptions? On the Effectiveness of Explanations
in Enabling People to Assess the Fairness of Automated Decision Systems
- arxiv url: http://arxiv.org/abs/2108.06500v1
- Date: Sat, 14 Aug 2021 09:39:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-17 14:50:53.130861
- Title: Appropriate Fairness Perceptions? On the Effectiveness of Explanations
in Enabling People to Assess the Fairness of Automated Decision Systems
- Title(参考訳): 適切な公正認識?
自動意思決定システムの公正性を評価するための説明文の有効性について
- Authors: Jakob Schoeffer and Niklas Kuehl
- Abstract要約: 効果的に説明するためには、基礎となるADSが公正である場合に限り、公平性に対する認識が増加するべきであると論じる。
本研究は, 適切な公正感のデシプラタムを導入し, 評価のための新しい研究設計を提案し, 総合的な実験に向けての次のステップを概説する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: It is often argued that one goal of explaining automated decision systems
(ADS) is to facilitate positive perceptions (e.g., fairness or trustworthiness)
of users towards such systems. This viewpoint, however, makes the implicit
assumption that a given ADS is fair and trustworthy, to begin with. If the ADS
issues unfair outcomes, then one might expect that explanations regarding the
system's workings will reveal its shortcomings and, hence, lead to a decrease
in fairness perceptions. Consequently, we suggest that it is more meaningful to
evaluate explanations against their effectiveness in enabling people to
appropriately assess the quality (e.g., fairness) of an associated ADS. We
argue that for an effective explanation, perceptions of fairness should
increase if and only if the underlying ADS is fair. In this in-progress work,
we introduce the desideratum of appropriate fairness perceptions, propose a
novel study design for evaluating it, and outline next steps towards a
comprehensive experiment.
- Abstract(参考訳): 自動決定システム(ADS)の説明の1つの目的は、ユーザの肯定的な認識(公正性や信頼性など)を促進することであるとしばしば主張されている。
しかし、この視点は、与えられたADSがまずは公平で信頼に値するという暗黙の仮定を下している。
もしADSが不公平な結果を出した場合、システムの動作に関する説明がその欠点を明らかにし、したがって公正感の低下につながると期待するかもしれない。
その結果、関連するADSの品質(公平さ)を適切に評価する上で、その有効性に対する説明を評価できることが示唆された。
効果的に説明するためには、基礎となるADSが公正である場合に限り、公平性に対する認識が増加するべきであると論じる。
本研究は, 適切な公正感のデシプラタムを導入し, 評価のための新しい研究設計を提案し, 総合実験に向けた次のステップを概説する。
関連論文リスト
- FairDgcl: Fairness-aware Recommendation with Dynamic Graph Contrastive Learning [48.38344934125999]
提案手法は,高品質なデータ拡張を実現し,コメンデーションフェアネスを改善する方法である。
具体的には,動的グラフ対逆学習フレームワークであるFairDgclを提案する。
FairDgclは、公正さと精度の両方を持つ拡張表現を同時に生成できることを示す。
論文 参考訳(メタデータ) (2024-10-23T04:43:03Z) - Understanding Fairness in Recommender Systems: A Healthcare Perspective [0.18416014644193066]
本稿では,医療レコメンデーションにおける公正に対する一般の理解について考察する。
参加者は4つのフェアネス指標から選択した。
その結果, 公平性に対する一大アプローチが不十分である可能性が示唆された。
論文 参考訳(メタデータ) (2024-09-05T19:59:42Z) - What Hides behind Unfairness? Exploring Dynamics Fairness in Reinforcement Learning [52.51430732904994]
強化学習問題では、エージェントはリターンを最大化しながら長期的な公正性を考慮する必要がある。
近年の研究では様々なフェアネスの概念が提案されているが、RL問題における不公平性がどのように生じるかは定かではない。
我々は、環境力学から生じる不平等を明示的に捉える、ダイナミックスフェアネスという新しい概念を導入する。
論文 参考訳(メタデータ) (2024-04-16T22:47:59Z) - Fairness Explainability using Optimal Transport with Applications in
Image Classification [0.46040036610482665]
機械学習アプリケーションにおける差別の原因を明らかにするための包括的アプローチを提案する。
We leverage Wasserstein barycenters to achieve fair predictions and introduce an extension to pinpoint bias-associated region。
これにより、各特徴がバイアスに影響を及ぼすかどうかを測定するために強制的公正性を使用する凝集系を導出することができる。
論文 参考訳(メタデータ) (2023-08-22T00:10:23Z) - Causal Fairness for Outcome Control [68.12191782657437]
本稿では,自動システムにおいて,公平かつ公平な結果変数を最適化することを目的とした,結果制御と呼ばれる特定の意思決定タスクについて検討する。
本稿では、まず因果レンズを通して利益の概念を分析し、特定の個人が肯定的な決定によってどれだけの利益を得られるかを明らかにする。
次に、保護された属性の影響を受けている可能性があることに留意し、これを分析するために使用できる因果的ツールを提案する。
論文 参考訳(メタデータ) (2023-06-08T09:31:18Z) - A Survey on Fairness-aware Recommender Systems [59.23208133653637]
本稿では,様々なレコメンデーションシナリオにおいてフェアネスの概念を提示し,現在の進歩を包括的に分類し,レコメンデーションシステムのさまざまな段階におけるフェアネスを促進するための典型的な手法を紹介する。
次に、フェアネスを意識したレコメンデーションシステムが実業界における産業応用に与える影響について検討する。
論文 参考訳(メタデータ) (2023-06-01T07:08:22Z) - Fair-CDA: Continuous and Directional Augmentation for Group Fairness [48.84385689186208]
公正な制約を課すための詳細なデータ拡張戦略を提案する。
グループ間の感性のある特徴の遷移経路のモデルを正規化することにより、グループフェアネスを実現することができることを示す。
提案手法はデータ生成モデルを仮定せず,精度と公平性の両方に優れた一般化を実現する。
論文 参考訳(メタデータ) (2023-04-01T11:23:00Z) - "There Is Not Enough Information": On the Effects of Explanations on
Perceptions of Informational Fairness and Trustworthiness in Automated
Decision-Making [0.0]
自動意思決定システム(ADS)は、連続的な意思決定にますます利用されている。
我々は,情報の公平さに対する人々の認識を評価するために,人間による研究を行う。
定性的フィードバックの包括的分析は、説明のために人々のデシラタに光を当てる。
論文 参考訳(メタデータ) (2022-05-11T20:06:03Z) - Joint Multisided Exposure Fairness for Recommendation [76.75990595228666]
本稿では,消費者と生産者の両面から共同で問題をモデル化する,露出公正度尺度のファミリを定式化する。
具体的には、双方の利害関係者に対するグループ属性について、個別のユーザや項目を超えて、より体系的なバイアスを推奨するフェアネスの懸念を識別し緩和する。
論文 参考訳(メタデータ) (2022-04-29T19:13:23Z) - On the Identification of Fair Auditors to Evaluate Recommender Systems
based on a Novel Non-Comparative Fairness Notion [1.116812194101501]
意思決定支援システムは、多くの実践的な展開の文脈で差別的であることが判明した。
非比較正義の原理に基づく新しい公正概念を提案する。
提案したフェアネスの概念は、比較フェアネスの概念の観点からも保証を提供することを示す。
論文 参考訳(メタデータ) (2020-09-09T16:04:41Z) - Exploring User Opinions of Fairness in Recommender Systems [13.749884072907163]
ユーザーが推奨する公平な待遇の考えは何なのかを尋ねる。
公平性に対するユーザの意見の相違や変化の原因となるものを分析する。
論文 参考訳(メタデータ) (2020-03-13T19:44:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。