論文の概要: Equity-Directed Bootstrapping: Examples and Analysis
- arxiv url: http://arxiv.org/abs/2108.06624v1
- Date: Sat, 14 Aug 2021 22:09:27 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-18 06:14:50.166236
- Title: Equity-Directed Bootstrapping: Examples and Analysis
- Title(参考訳): Equity-Directed Bootstrapping:実例と分析
- Authors: Harish S. Bhat and Majerle E. Reeves and Sidra Goldman-Mellor
- Abstract要約: エクイティ指向のブートストラップがテストセットの感度と特異性を、同等のオッズ基準を満たすためにいかに近づけるかを示す。
ナイーブベイズとロジスティックレグレッションの文脈で、私たちは、エクイティ指向のブートストラップを分析し、オッズ比を1に近いものにすることで機能することを示した。
- 参考スコア(独自算出の注目度): 3.007949058551534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When faced with severely imbalanced binary classification problems, we often
train models on bootstrapped data in which the number of instances of each
class occur in a more favorable ratio, e.g., one. We view algorithmic inequity
through the lens of imbalanced classification: in order to balance the
performance of a classifier across groups, we can bootstrap to achieve training
sets that are balanced with respect to both labels and group identity. For an
example problem with severe class imbalance---prediction of suicide death from
administrative patient records---we illustrate how an equity-directed bootstrap
can bring test set sensitivities and specificities much closer to satisfying
the equal odds criterion. In the context of na\"ive Bayes and logistic
regression, we analyze the equity-directed bootstrap, demonstrating that it
works by bringing odds ratios close to one, and linking it to methods involving
intercept adjustment, thresholding, and weighting.
- Abstract(参考訳): 非常に不均衡なバイナリ分類問題に直面した場合、私たちはしばしば、各クラスのインスタンス数がより好ましい比率で発生するブートストラップデータ上でモデルを訓練する。
グループ間の分類器のパフォーマンスのバランスをとるために、ラベルとグループアイデンティティの両方に関してバランスの取れたトレーニングセットを達成するためにブートストラップを行うことができる。
重度クラス不均衡の例として, 行政患者記録から自殺死亡の予測を例に, エクイティ指向のブートストラップが, 同等のオッズ基準を満たすよりも, テストセットの感性や特異性を, どのように得るかを示す。
na\\ive Bayesとロジスティック回帰の文脈で、私たちは、株式指向のブートストラップを分析し、オッズ比を1に近づけ、インターセプト調整、しきい値調整、重み付けを含む手法にリンクすることで機能することを示した。
関連論文リスト
- Twice Class Bias Correction for Imbalanced Semi-Supervised Learning [59.90429949214134]
textbfTwice textbfClass textbfBias textbfCorrection (textbfTCBC) と呼ばれる新しいアプローチを導入する。
トレーニング過程におけるモデルパラメータのクラスバイアスを推定する。
非ラベル標本に対してモデルの擬似ラベルに二次補正を適用する。
論文 参考訳(メタデータ) (2023-12-27T15:06:36Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
クロスモーダル検索は、実際は精力的な、十分に整合した大規模データセットに依存している。
我々は、新しい雑音対応学習フレームワーク、textbfSelf-textbfReinforcing textbfErrors textbfMitigation(SREM)を導入する。
論文 参考訳(メタデータ) (2023-12-27T09:03:43Z) - Deep Imbalanced Regression via Hierarchical Classification Adjustment [50.19438850112964]
コンピュータビジョンにおける回帰タスクは、しばしば、対象空間をクラスに定量化することで分類される。
トレーニングサンプルの大多数は目標値の先頭にあるが、少数のサンプルは通常より広い尾幅に分布する。
不均衡回帰タスクを解くために階層型分類器を構築することを提案する。
不均衡回帰のための新しい階層型分類調整(HCA)は,3つのタスクにおいて優れた結果を示す。
論文 参考訳(メタデータ) (2023-10-26T04:54:39Z) - Learning to Adapt Classifier for Imbalanced Semi-supervised Learning [38.434729550279116]
Pseudo-labelingは、有望な半教師付き学習(SSL)パラダイムであることが証明されている。
既存の擬似ラベル法では、トレーニングデータのクラス分布が均衡していると仮定するのが一般的である。
本研究では,不均衡な半教師付きセットアップ下での擬似ラベリングについて検討する。
論文 参考訳(メタデータ) (2022-07-28T02:15:47Z) - Relieving Long-tailed Instance Segmentation via Pairwise Class Balance [85.53585498649252]
長い尾のインスタンスセグメンテーションは、クラス間のトレーニングサンプルの極端な不均衡のために難しいタスクである。
尾のついたものに対して、(大多数のサンプルを含む)ヘッドクラスの深刻なバイアスを引き起こす。
そこで本研究では,学習中の予測嗜好を蓄積するために,学習中に更新される混乱行列上に構築された新しいPairwise Class Balance(PCB)手法を提案する。
論文 参考訳(メタデータ) (2022-01-08T07:48:36Z) - Prototypical Classifier for Robust Class-Imbalanced Learning [64.96088324684683]
埋め込みネットワークに付加的なパラメータを必要としないtextitPrototypealを提案する。
プロトタイプは、訓練セットがクラス不均衡であるにもかかわらず、すべてのクラスに対してバランスと同等の予測を生成する。
我々は, CIFAR-10LT, CIFAR-100LT, Webvision のデータセットを用いて, プロトタイプが芸術の状況と比較した場合, サブスタンスの改善が得られることを検証した。
論文 参考訳(メタデータ) (2021-10-22T01:55:01Z) - Statistical Theory for Imbalanced Binary Classification [8.93993657323783]
最適分類性能は、これまで形式化されていなかったクラス不均衡の特定の性質に依存することを示す。
具体的には、一様クラス不均衡と呼ばれる新しいクラス不均衡のサブタイプを提案する。
これらの結果は、不均衡二項分類に対する最初の有意義な有限サンプル統計理論のいくつかを提供する。
論文 参考訳(メタデータ) (2021-07-05T03:55:43Z) - Disentangling Sampling and Labeling Bias for Learning in Large-Output
Spaces [64.23172847182109]
異なる負のサンプリングスキームが支配的ラベルと稀なラベルで暗黙的にトレードオフパフォーマンスを示す。
すべてのラベルのサブセットで作業することで生じるサンプリングバイアスと、ラベルの不均衡に起因するデータ固有のラベルバイアスの両方に明示的に対処する統一された手段を提供する。
論文 参考訳(メタデータ) (2021-05-12T15:40:13Z) - Binary Classification: Counterbalancing Class Imbalance by Applying
Regression Models in Combination with One-Sided Label Shifts [0.4970364068620607]
クラス不均衡の問題に対処する新しい手法を提案する。
我々は、対応する回帰タスクが均衡するように、負と正の目標ラベルのセットを生成する。
我々は,複数の公開データセットに対するアプローチを評価し,提案手法を最もポピュラーなオーバーサンプリング手法と比較した。
論文 参考訳(メタデータ) (2020-11-30T13:24:47Z) - Statistical and Algorithmic Insights for Semi-supervised Learning with
Self-training [30.866440916522826]
自己学習は、半教師あり学習における古典的なアプローチである。
自己学習の繰り返しは、たとえ最適でない固定点に留まったとしても、モデル精度を良好に向上することを示す。
次に、自己学習に基づく半スーパービジョンと、異種データによる学習のより一般的な問題との関連性を確立する。
論文 参考訳(メタデータ) (2020-06-19T08:09:07Z) - VaB-AL: Incorporating Class Imbalance and Difficulty with Variational
Bayes for Active Learning [38.33920705605981]
本研究では,クラス不均衡をアクティブラーニングフレームワークに自然に組み込む手法を提案する。
提案手法は,複数の異なるデータセットのタスク分類に適用可能であることを示す。
論文 参考訳(メタデータ) (2020-03-25T07:34:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。