Introduction to Quantum Reinforcement Learning: Theory and
PennyLane-based Implementation
- URL: http://arxiv.org/abs/2108.06849v1
- Date: Mon, 16 Aug 2021 01:05:49 GMT
- Title: Introduction to Quantum Reinforcement Learning: Theory and
PennyLane-based Implementation
- Authors: Yunseok Kwak, Won Joon Yun, Soyi Jung, Jong-Kook Kim, Joongheon Kim
- Abstract summary: We will introduce the concept of quantum reinforcement learning using a variational quantum circuit.
We will discuss the power and possibility of quantum reinforcement learning from the experimental results obtained through this work.
- Score: 10.40861455010028
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergence of quantum computing enables for researchers to apply quantum
circuit on many existing studies. Utilizing quantum circuit and quantum
differential programming, many research are conducted such as \textit{Quantum
Machine Learning} (QML). In particular, quantum reinforcement learning is a
good field to test the possibility of quantum machine learning, and a lot of
research is being done. This work will introduce the concept of quantum
reinforcement learning using a variational quantum circuit, and confirm its
possibility through implementation and experimentation. We will first present
the background knowledge and working principle of quantum reinforcement
learning, and then guide the implementation method using the PennyLane library.
We will also discuss the power and possibility of quantum reinforcement
learning from the experimental results obtained through this work.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Machine Learning Implementations: Proposals and Experiments [0.0]
The article reviews specific high-impact topics such as quantum reinforcement learning, quantum autoencoders, and quantum memristors.
The field of quantum machine learning could be among the first quantum technologies producing results that are beneficial for industry and, in turn, to society.
arXiv Detail & Related papers (2023-03-11T01:02:16Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Quantum reservoir computing: a reservoir approach toward quantum machine
learning on near-term quantum devices [0.8206877486958002]
Quantum reservoir computing is an approach to use such a complex and rich dynamics on the quantum systems as it is for temporal machine learning.
All these quantum machine learning approaches are experimentally feasible and effective on the state-of-the-art quantum devices.
arXiv Detail & Related papers (2020-11-10T04:45:52Z) - Reinforcement Learning with Quantum Variational Circuits [0.0]
This work explores the potential for quantum computing to facilitate reinforcement learning problems.
Specifically, we investigate the use of quantum variational circuits, a form of quantum machine learning.
Results indicate both hybrid and pure quantum variational circuit have the ability to solve reinforcement learning tasks with a smaller parameter space.
arXiv Detail & Related papers (2020-08-15T00:13:01Z) - Quantum machine learning and quantum biomimetics: A perspective [0.0]
Quantum machine learning has emerged as an exciting and promising paradigm inside quantum technologies.
In this Perspective, we give an overview of these topics, describing the related research carried out by the scientific community.
arXiv Detail & Related papers (2020-04-25T07:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.