Reinforcement Learning with Quantum Variational Circuits
- URL: http://arxiv.org/abs/2008.07524v3
- Date: Fri, 28 Aug 2020 06:54:21 GMT
- Title: Reinforcement Learning with Quantum Variational Circuits
- Authors: Owen Lockwood and Mei Si
- Abstract summary: This work explores the potential for quantum computing to facilitate reinforcement learning problems.
Specifically, we investigate the use of quantum variational circuits, a form of quantum machine learning.
Results indicate both hybrid and pure quantum variational circuit have the ability to solve reinforcement learning tasks with a smaller parameter space.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of quantum computational techniques has advanced greatly in
recent years, parallel to the advancements in techniques for deep reinforcement
learning. This work explores the potential for quantum computing to facilitate
reinforcement learning problems. Quantum computing approaches offer important
potential improvements in time and space complexity over traditional algorithms
because of its ability to exploit the quantum phenomena of superposition and
entanglement. Specifically, we investigate the use of quantum variational
circuits, a form of quantum machine learning. We present our techniques for
encoding classical data for a quantum variational circuit, we further explore
pure and hybrid quantum algorithms for DQN and Double DQN. Our results indicate
both hybrid and pure quantum variational circuit have the ability to solve
reinforcement learning tasks with a smaller parameter space. These comparison
are conducted with two OpenAI Gym environments: CartPole and Blackjack, The
success of this work is indicative of a strong future relationship between
quantum machine learning and deep reinforcement learning.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Circuit Partitioning for Multi-Core Quantum Architectures with Deep Reinforcement Learning [3.65246419631361]
Multi-core quantum architectures are proposed to solve the scalability problem.
One of these challenges is to adapt a quantum algorithm to fit within the different cores of the quantum computer.
This paper presents a novel approach for circuit partitioning using Deep Reinforcement Learning.
arXiv Detail & Related papers (2024-01-31T16:33:12Z) - Quafu-RL: The Cloud Quantum Computers based Quantum Reinforcement
Learning [0.0]
In this work, we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on BAQIS Quafu quantum computing cloud.
The experimental results demonstrate that the Reinforcement Learning (RL) agents are capable of achieving goals that are slightly relaxed both during the training and inference stages.
arXiv Detail & Related papers (2023-05-29T09:13:50Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Time-Optimal Quantum Driving by Variational Circuit Learning [2.9582851733261286]
Digital quantum simulation and hybrid circuit learning opens up new prospects for quantum optimal control.
We simulate the wave-packet expansion of a trapped quantum particle on a quantum device with a finite number qubits.
We discuss the robustness of our method against errors and demonstrate the absence of barren plateaus in the circuit.
arXiv Detail & Related papers (2022-11-01T11:53:49Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Quantum neural networks force fields generation [0.0]
We design a quantum neural network architecture and apply it successfully to different molecules of growing complexity.
The quantum models exhibit larger effective dimension with respect to classical counterparts and can reach competitive performances.
arXiv Detail & Related papers (2022-03-09T12:10:09Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Geometric Machine Learning for Quantum Circuits and Control [78.50747042819503]
We review and extend the application of deep learning to quantum geometric control problems.
We demonstrate enhancements in time-optimal control in the context of quantum circuit synthesis problems.
Our results are of interest to researchers in quantum control and quantum information theory seeking to combine machine learning and geometric techniques for time-optimal control problems.
arXiv Detail & Related papers (2020-06-19T19:12:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.