Quantum Machine Learning Implementations: Proposals and Experiments
- URL: http://arxiv.org/abs/2303.06263v1
- Date: Sat, 11 Mar 2023 01:02:16 GMT
- Title: Quantum Machine Learning Implementations: Proposals and Experiments
- Authors: Lucas Lamata
- Abstract summary: The article reviews specific high-impact topics such as quantum reinforcement learning, quantum autoencoders, and quantum memristors.
The field of quantum machine learning could be among the first quantum technologies producing results that are beneficial for industry and, in turn, to society.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article gives an overview and a perspective of recent theoretical
proposals and their experimental implementations in the field of quantum
machine learning. Without an aim to being exhaustive, the article reviews
specific high-impact topics such as quantum reinforcement learning, quantum
autoencoders, and quantum memristors, and their experimental realizations in
the platforms of quantum photonics and superconducting circuits. The field of
quantum machine learning could be among the first quantum technologies
producing results that are beneficial for industry and, in turn, to society.
Therefore, it is necessary to push forward initial quantum implementations of
this technology, in Noisy Intermediate-Scale Quantum Computers, aiming for
achieving fruitful calculations in machine learning that are better than with
any other current or future computing paradigm.
Related papers
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning.
This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits are used to develop QML architectures.
arXiv Detail & Related papers (2024-11-14T12:27:50Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum information processing with superconducting circuits: a
perspective [0.0]
Key issues involve how to achieve quantum advantage in useful applications for quantum optimization and materials science.
Recent work on applications of variational quantum algorithms for optimization and electronic structure determination.
Current work and ideas about how to scale up to competitive quantum systems.
arXiv Detail & Related papers (2023-02-09T10:49:56Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
Advances in isolating, controlling and entangling quantum systems are transforming what was once a curious feature of quantum mechanics into a vehicle for disruptive scientific and technological progress.
From the perspective of three domain science theorists, this article compiles thoughts about the interface on entanglement, complexity, and quantum simulation.
arXiv Detail & Related papers (2021-07-10T06:12:06Z) - Opportunities in Quantum Reservoir Computing and Extreme Learning
Machines [0.0]
Quantum reservoir computing (QRC) and quantum extreme learning machines (QELM) are two emerging approaches.
They exploit the quantumness of physical systems combined with an easy training strategy, achieving an excellent performance.
arXiv Detail & Related papers (2021-02-23T18:05:04Z) - Quantum Computing: an undergraduate approach using Qiskit [0.0]
We present the Quantum Information Software Developer Kit - Qiskit, for teaching quantum computing to undergraduate students.
We focus on presenting the construction of the programs on any common laptop or desktop computer and their execution on real quantum processors.
The codes are made available throughout the text so that readers, even with little experience in scientific computing, can reproduce them.
arXiv Detail & Related papers (2021-01-26T18:19:23Z) - Quantum reservoir computing: a reservoir approach toward quantum machine
learning on near-term quantum devices [0.8206877486958002]
Quantum reservoir computing is an approach to use such a complex and rich dynamics on the quantum systems as it is for temporal machine learning.
All these quantum machine learning approaches are experimentally feasible and effective on the state-of-the-art quantum devices.
arXiv Detail & Related papers (2020-11-10T04:45:52Z) - Quantum machine learning and quantum biomimetics: A perspective [0.0]
Quantum machine learning has emerged as an exciting and promising paradigm inside quantum technologies.
In this Perspective, we give an overview of these topics, describing the related research carried out by the scientific community.
arXiv Detail & Related papers (2020-04-25T07:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.