Toward the Understanding of Deep Text Matching Models for Information
Retrieval
- URL: http://arxiv.org/abs/2108.07081v1
- Date: Mon, 16 Aug 2021 13:33:15 GMT
- Title: Toward the Understanding of Deep Text Matching Models for Information
Retrieval
- Authors: Lijuan Chen, Yanyan Lan, Liang Pang, Jiafeng Guo, Xueqi Cheng
- Abstract summary: This paper aims at testing whether existing deep text matching methods satisfy some fundamental gradients in information retrieval.
Specifically, four attributions are used in our study, i.e., term frequency constraint, term discrimination constraint, length normalization constraints, and TF-length constraint.
Experimental results on LETOR 4.0 and MS Marco show that all the investigated deep text matching methods satisfy the above constraints with high probabilities in statistics.
- Score: 72.72380690535766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Semantic text matching is a critical problem in information retrieval.
Recently, deep learning techniques have been widely used in this area and
obtained significant performance improvements. However, most models are black
boxes and it is hard to understand what happened in the matching process, due
to the poor interpretability of deep learning. This paper aims at tackling this
problem. The key idea is to test whether existing deep text matching methods
satisfy some fundamental heuristics in information retrieval. Specifically,
four heuristics are used in our study, i.e., term frequency constraint, term
discrimination constraint, length normalization constraints, and TF-length
constraint. Since deep matching models usually contain many parameters, it is
difficult to conduct a theoretical study for these complicated functions. In
this paper, We propose an empirical testing method. Specifically, We first
construct some queries and documents to make them satisfy the assumption in a
constraint, and then test to which extend a deep text matching model trained on
the original dataset satisfies the corresponding constraint. Besides, a famous
attribution based interpretation method, namely integrated gradient, is adopted
to conduct detailed analysis and guide for feasible improvement. Experimental
results on LETOR 4.0 and MS Marco show that all the investigated deep text
matching methods, both representation and interaction based methods, satisfy
the above constraints with high probabilities in statistics. We further extend
these constraints to the semantic settings, which are shown to be better
satisfied for all the deep text matching models. These empirical findings give
clear understandings on why deep text matching models usually perform well in
information retrieval. We believe the proposed evaluation methodology will be
useful for testing future deep text matching models.
Related papers
- Detecting Statements in Text: A Domain-Agnostic Few-Shot Solution [1.3654846342364308]
State-of-the-art approaches usually involve fine-tuning models on large annotated datasets, which are costly to produce.
We propose and release a qualitative and versatile few-shot learning methodology as a common paradigm for any claim-based textual classification task.
We illustrate this methodology in the context of three tasks: climate change contrarianism detection, topic/stance classification and depression-relates symptoms detection.
arXiv Detail & Related papers (2024-05-09T12:03:38Z) - Language Models for Text Classification: Is In-Context Learning Enough? [54.869097980761595]
Recent foundational language models have shown state-of-the-art performance in many NLP tasks in zero- and few-shot settings.
An advantage of these models over more standard approaches is the ability to understand instructions written in natural language (prompts)
This makes them suitable for addressing text classification problems for domains with limited amounts of annotated instances.
arXiv Detail & Related papers (2024-03-26T12:47:39Z) - How Well Do Text Embedding Models Understand Syntax? [50.440590035493074]
The ability of text embedding models to generalize across a wide range of syntactic contexts remains under-explored.
Our findings reveal that existing text embedding models have not sufficiently addressed these syntactic understanding challenges.
We propose strategies to augment the generalization ability of text embedding models in diverse syntactic scenarios.
arXiv Detail & Related papers (2023-11-14T08:51:00Z) - CoCo: Coherence-Enhanced Machine-Generated Text Detection Under Data
Limitation With Contrastive Learning [14.637303913878435]
We present a coherence-based contrastive learning model named CoCo to detect the possible MGT under low-resource scenario.
To exploit the linguistic feature, we encode coherence information in form of graph into text representation.
Experiment results on two public datasets and two self-constructed datasets prove our approach outperforms the state-of-art methods significantly.
arXiv Detail & Related papers (2022-12-20T15:26:19Z) - Revisiting text decomposition methods for NLI-based factuality scoring
of summaries [9.044665059626958]
We show that fine-grained decomposition is not always a winning strategy for factuality scoring.
We also show that small changes to previously proposed entailment-based scoring methods can result in better performance.
arXiv Detail & Related papers (2022-11-30T09:54:37Z) - Textual Enhanced Contrastive Learning for Solving Math Word Problems [23.196339273292246]
We propose a Textual Enhanced Contrastive Learning framework, which enforces the models to distinguish semantically similar examples.
We adopt a self-supervised manner strategy to enrich examples with subtle textual variance.
Experimental results show that our method achieves state-of-the-art on both widely used benchmark datasets and also exquisitely designed challenge datasets in English and Chinese.
arXiv Detail & Related papers (2022-11-29T08:44:09Z) - Query Expansion Using Contextual Clue Sampling with Language Models [69.51976926838232]
We propose a combination of an effective filtering strategy and fusion of the retrieved documents based on the generation probability of each context.
Our lexical matching based approach achieves a similar top-5/top-20 retrieval accuracy and higher top-100 accuracy compared with the well-established dense retrieval model DPR.
For end-to-end QA, the reader model also benefits from our method and achieves the highest Exact-Match score against several competitive baselines.
arXiv Detail & Related papers (2022-10-13T15:18:04Z) - AES Systems Are Both Overstable And Oversensitive: Explaining Why And
Proposing Defenses [66.49753193098356]
We investigate the reason behind the surprising adversarial brittleness of scoring models.
Our results indicate that autoscoring models, despite getting trained as "end-to-end" models, behave like bag-of-words models.
We propose detection-based protection models that can detect oversensitivity and overstability causing samples with high accuracies.
arXiv Detail & Related papers (2021-09-24T03:49:38Z) - Comprehensive Studies for Arbitrary-shape Scene Text Detection [78.50639779134944]
We propose a unified framework for the bottom-up based scene text detection methods.
Under the unified framework, we ensure the consistent settings for non-core modules.
With the comprehensive investigations and elaborate analyses, it reveals the advantages and disadvantages of previous models.
arXiv Detail & Related papers (2021-07-25T13:18:55Z) - FAT ALBERT: Finding Answers in Large Texts using Semantic Similarity
Attention Layer based on BERT [0.5772546394254112]
We develop a model based on BERT, a state-of-the-art transformer network.
We are ranked first in the leader board with test accuracy of 87.79%.
arXiv Detail & Related papers (2020-08-22T08:04:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.