論文の概要: Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping
- arxiv url: http://arxiv.org/abs/2108.07323v1
- Date: Mon, 16 Aug 2021 19:35:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-19 01:18:06.020209
- Title: Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping
- Title(参考訳): 自己監督型学習のクラスタ化:土地被覆マッピングへの適用
- Authors: Rahul Ghosh, Xiaowei Jia, Chenxi Lin, Zhenong Jin, Vipin Kumar
- Abstract要約: 本稿では,自己教師型学習のためのクラスタリングに基づくプレテキストタスクを用いて,土地被覆マッピングの新しい手法を提案する。
社会的に関係のある2つのアプリケーションに対して,本手法の有効性を示す。
- 参考スコア(独自算出の注目度): 10.720852987343896
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collecting large annotated datasets in Remote Sensing is often expensive and
thus can become a major obstacle for training advanced machine learning models.
Common techniques of addressing this issue, based on the underlying idea of
pre-training the Deep Neural Networks (DNN) on freely available large datasets,
cannot be used for Remote Sensing due to the unavailability of such large-scale
labeled datasets and the heterogeneity of data sources caused by the varying
spatial and spectral resolution of different sensors. Self-supervised learning
is an alternative approach that learns feature representation from unlabeled
images without using any human annotations. In this paper, we introduce a new
method for land cover mapping by using a clustering based pretext task for
self-supervised learning. We demonstrate the effectiveness of the method on two
societally relevant applications from the aspect of segmentation performance,
discriminative feature representation learning and the underlying cluster
structure. We also show the effectiveness of the active sampling using the
clusters obtained from our method in improving the mapping accuracy given a
limited budget of annotating.
- Abstract(参考訳): リモートセンシングで大規模なアノテートデータセットを収集することは、しばしばコストがかかるため、高度な機械学習モデルをトレーニングする上で大きな障害になる可能性がある。
この問題に対処する一般的なテクニックは、自由に利用可能な大規模データセット上でDeep Neural Networks(DNN)を事前トレーニングするという考え方に基づいており、このような大規模ラベル付きデータセットが利用できないことと、異なるセンサーの空間的およびスペクトル的解像度の変化に起因するデータソースの不均一性のためにリモートセンシングには使用できない。
自己教師付き学習は、人間のアノテーションを使わずにラベルのない画像から特徴表現を学習する代替手法である。
本稿では,自己教師型学習のためのクラスタリングに基づくプレテキストタスクを用いて,土地被覆マッピングの新しい手法を提案する。
本手法は,セグメンテーション性能,識別的特徴表現学習,基盤となるクラスタ構造の観点から,社会に関係のある2つのアプリケーションに対して有効であることを示す。
また,アノテート予算が限定された場合のマッピング精度を向上させるため,本手法から得られたクラスタを用いたアクティブサンプリングの有効性を示した。
関連論文リスト
- Self-Supervised Learning for User Localization [8.529237718266042]
機械学習技術は、ローカライゼーションタスクにおいて顕著な精度を示している。
大量のラベル付きデータ、特にChannel State Information(CSI)およびそれに対応する座標への依存は、依然としてボトルネックである。
CSIに基づくユーザローカライゼーションのための教師付き学習性能を高めるために,ラベルなしデータによる自己教師付き事前学習を活用する先駆的手法を提案する。
論文 参考訳(メタデータ) (2024-04-19T21:49:10Z) - Terrain-Informed Self-Supervised Learning: Enhancing Building Footprint Extraction from LiDAR Data with Limited Annotations [1.3243401820948064]
フットプリントマップの構築は、広範な後処理なしで正確なフットプリント抽出を約束する。
ディープラーニング手法は、一般化とラベルの効率の面で課題に直面している。
リモートセンシングに適した地形認識型自己教師型学習を提案する。
論文 参考訳(メタデータ) (2023-11-02T12:34:23Z) - Reinforcement Learning Based Multi-modal Feature Fusion Network for
Novel Class Discovery [47.28191501836041]
本稿では,人間の認知過程をシミュレートするために強化学習フレームワークを用いる。
また,マルチモーダル情報から特徴を抽出・融合するマルチエージェントフレームワークをデプロイした。
我々は、OS-MN40、OS-MN40-Miss、Cifar10データセットを用いて、3Dドメインと2Dドメインの両方でのアプローチの性能を示す。
論文 参考訳(メタデータ) (2023-08-26T07:55:32Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Evaluating the Label Efficiency of Contrastive Self-Supervised Learning
for Multi-Resolution Satellite Imagery [0.0]
遠隔センシング領域における自己教師付き学習は、容易に利用可能なラベル付きデータを活用するために応用されている。
本稿では,ラベル効率のレンズを用いた自己教師型視覚表現学習について検討する。
論文 参考訳(メタデータ) (2022-10-13T06:54:13Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
表情認識のためのSFUDA法を提案する。
本手法は,自己教師付き事前学習を利用して,対象データから優れた特徴表現を学習する。
提案手法の有効性を4つの適応方式で検証し,FERに適用した場合,既存のSFUDA法より一貫して優れていることを示す。
論文 参考訳(メタデータ) (2022-10-11T08:24:50Z) - Voxel-wise Adversarial Semi-supervised Learning for Medical Image
Segmentation [4.489713477369384]
医用画像セグメンテーションのための新しい対向学習に基づく半教師付きセグメンテーション手法を提案する。
本手法では,複数の階層から局所的特徴とグローバルな特徴を埋め込んで,複数のクラス間のコンテキスト関係を学習する。
左心房(シングルクラス)とマルチオーガニックデータセット(マルチクラス)のイメージセグメンテーションにおける、最先端の半教師あり学習手法よりも優れています。
論文 参考訳(メタデータ) (2022-05-14T06:57:19Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
完全ラベル付きデータからの学習は、Person Re-IdentificationやText Authorship Attributionなどのマルチメディアフォレスト問題において困難である。
近年の自己教師型学習法は,基礎となるクラスに意味的差異が有る場合に,完全ラベル付きデータを扱う際に有効であることが示されている。
本研究では,異なるクラスからのサンプルが顕著に多様性を持っていない場合でも,ラベルのないデータから学習できるようにすることにより,個人再認識とテキストオーサシップの属性に対処する戦略を提案する。
論文 参考訳(メタデータ) (2022-02-07T13:08:11Z) - Weakly Supervised Change Detection Using Guided Anisotropic Difusion [97.43170678509478]
我々は、このようなデータセットを変更検出の文脈で活用するのに役立つ独自のアイデアを提案する。
まず,意味的セグメンテーション結果を改善する誘導異方性拡散(GAD)アルゴリズムを提案する。
次に、変化検出に適した2つの弱い教師付き学習戦略の可能性を示す。
論文 参考訳(メタデータ) (2021-12-31T10:03:47Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
遠隔センシングにおける深層ニューラルネットワークの事前学習のための自己教師型アプローチを提案する。
ジオタグ付きオーディオ記録とリモートセンシングの対応を利用して、これは完全にラベルなしの方法で行われる。
提案手法は,既存のリモートセンシング画像の事前学習方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-02T07:50:50Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。