Voxel-wise Adversarial Semi-supervised Learning for Medical Image
Segmentation
- URL: http://arxiv.org/abs/2205.06987v1
- Date: Sat, 14 May 2022 06:57:19 GMT
- Title: Voxel-wise Adversarial Semi-supervised Learning for Medical Image
Segmentation
- Authors: Chae Eun Lee and Hyelim Park and Yeong-Gil Shin and Minyoung Chung
- Abstract summary: We introduce a novel adversarial learning-based semi-supervised segmentation method for medical image segmentation.
Our method embeds both local and global features from multiple hidden layers and learns context relations between multiple classes.
Our method outperforms current best-performing state-of-the-art semi-supervised learning approaches on the image segmentation of the left atrium (single class) and multiorgan datasets (multiclass)
- Score: 4.489713477369384
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised learning for medical image segmentation is an important area
of research for alleviating the huge cost associated with the construction of
reliable large-scale annotations in the medical domain. Recent semi-supervised
approaches have demonstrated promising results by employing consistency
regularization, pseudo-labeling techniques, and adversarial learning. These
methods primarily attempt to learn the distribution of labeled and unlabeled
data by enforcing consistency in the predictions or embedding context. However,
previous approaches have focused only on local discrepancy minimization or
context relations across single classes. In this paper, we introduce a novel
adversarial learning-based semi-supervised segmentation method that effectively
embeds both local and global features from multiple hidden layers and learns
context relations between multiple classes. Our voxel-wise adversarial learning
method utilizes a voxel-wise feature discriminator, which considers multilayer
voxel-wise features (involving both local and global features) as an input by
embedding class-specific voxel-wise feature distribution. Furthermore, we
improve our previous representation learning method by overcoming information
loss and learning stability problems, which enables rich representations of
labeled data. Our method outperforms current best-performing state-of-the-art
semi-supervised learning approaches on the image segmentation of the left
atrium (single class) and multiorgan datasets (multiclass). Moreover, our
visual interpretation of the feature space demonstrates that our proposed
method enables a well-distributed and separated feature space from both labeled
and unlabeled data, which improves the overall prediction results.
Related papers
- A Classifier-Free Incremental Learning Framework for Scalable Medical Image Segmentation [6.591403935303867]
We introduce a novel segmentation paradigm enabling the segmentation of a variable number of classes within a single classifier-free network.
This network is trained using contrastive learning and produces discriminative feature representations that facilitate straightforward interpretation.
We demonstrate the flexibility of our method in handling varying class numbers within a unified network and its capacity for incremental learning.
arXiv Detail & Related papers (2024-05-25T19:05:07Z) - Multi-Scale Cross Contrastive Learning for Semi-Supervised Medical Image
Segmentation [14.536384387956527]
We develop a novel Multi-Scale Cross Supervised Contrastive Learning framework to segment structures in medical images.
Our approach contrasts multi-scale features based on ground-truth and cross-predicted labels, in order to extract robust feature representations.
It outperforms state-of-the-art semi-supervised methods by more than 3.0% in Dice.
arXiv Detail & Related papers (2023-06-25T16:55:32Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
Learning from fully-unlabeled data is challenging in Multimedia Forensics problems, such as Person Re-Identification and Text Authorship Attribution.
Recent self-supervised learning methods have shown to be effective when dealing with fully-unlabeled data in cases where the underlying classes have significant semantic differences.
We propose a strategy to tackle Person Re-Identification and Text Authorship Attribution by enabling learning from unlabeled data even when samples from different classes are not prominently diverse.
arXiv Detail & Related papers (2022-02-07T13:08:11Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Uncertainty-Guided Mutual Consistency Learning for Semi-Supervised
Medical Image Segmentation [9.745971699005857]
We propose a novel uncertainty-guided mutual consistency learning framework for medical image segmentation.
It integrates intra-task consistency learning from up-to-date predictions for self-ensembling and cross-task consistency learning from task-level regularization to exploit geometric shape information.
Our method achieves performance gains by leveraging unlabeled data and outperforms existing semi-supervised segmentation methods.
arXiv Detail & Related papers (2021-12-05T08:19:41Z) - Dense Contrastive Visual-Linguistic Pretraining [53.61233531733243]
Several multimodal representation learning approaches have been proposed that jointly represent image and text.
These approaches achieve superior performance by capturing high-level semantic information from large-scale multimodal pretraining.
We propose unbiased Dense Contrastive Visual-Linguistic Pretraining to replace the region regression and classification with cross-modality region contrastive learning.
arXiv Detail & Related papers (2021-09-24T07:20:13Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z) - MCDAL: Maximum Classifier Discrepancy for Active Learning [74.73133545019877]
Recent state-of-the-art active learning methods have mostly leveraged Generative Adversarial Networks (GAN) for sample acquisition.
We propose in this paper a novel active learning framework that we call Maximum Discrepancy for Active Learning (MCDAL)
In particular, we utilize two auxiliary classification layers that learn tighter decision boundaries by maximizing the discrepancies among them.
arXiv Detail & Related papers (2021-07-23T06:57:08Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.