Weakly Supervised Change Detection Using Guided Anisotropic Difusion
- URL: http://arxiv.org/abs/2112.15367v1
- Date: Fri, 31 Dec 2021 10:03:47 GMT
- Title: Weakly Supervised Change Detection Using Guided Anisotropic Difusion
- Authors: Rodrigo Caye Daudt, Bertrand Le Saux, Alexandre Boulch, Yann Gousseau
- Abstract summary: We propose original ideas that help us to leverage such datasets in the context of change detection.
First, we propose the guided anisotropic diffusion (GAD) algorithm, which improves semantic segmentation results.
We then show its potential in two weakly-supervised learning strategies tailored for change detection.
- Score: 97.43170678509478
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Large scale datasets created from crowdsourced labels or openly available
data have become crucial to provide training data for large scale learning
algorithms. While these datasets are easier to acquire, the data are frequently
noisy and unreliable, which is motivating research on weakly supervised
learning techniques. In this paper we propose original ideas that help us to
leverage such datasets in the context of change detection. First, we propose
the guided anisotropic diffusion (GAD) algorithm, which improves semantic
segmentation results using the input images as guides to perform edge
preserving filtering. We then show its potential in two weakly-supervised
learning strategies tailored for change detection. The first strategy is an
iterative learning method that combines model optimisation and data cleansing
using GAD to extract the useful information from a large scale change detection
dataset generated from open vector data. The second one incorporates GAD within
a novel spatial attention layer that increases the accuracy of weakly
supervised networks trained to perform pixel-level predictions from image-level
labels. Improvements with respect to state-of-the-art are demonstrated on 4
different public datasets.
Related papers
- Debiased Learning for Remote Sensing Data [29.794246747637104]
We propose a highly effective semi-supervised approach tailored specifically to remote sensing data.
First, we adapt the FixMatch framework to remote sensing data by designing robust strong and weak augmentations suitable for this domain.
Second, we develop an effective semi-supervised learning method by removing bias in imbalanced training data resulting from both actual labels and pseudo-labels predicted by the model.
arXiv Detail & Related papers (2023-12-24T03:33:30Z) - DFIL: Deepfake Incremental Learning by Exploiting Domain-invariant
Forgery Clues [32.045504965382015]
Current deepfake detection models can generally recognize forgery images by training on a large dataset.
The accuracy of detection models degrades significantly on images generated by new deepfake methods due to the difference in data distribution.
We present a novel incremental learning framework that improves the generalization of deepfake detection models.
arXiv Detail & Related papers (2023-09-18T07:02:26Z) - DiffusionEngine: Diffusion Model is Scalable Data Engine for Object
Detection [41.436817746749384]
Diffusion Model is a scalable data engine for object detection.
DiffusionEngine (DE) provides high-quality detection-oriented training pairs in a single stage.
arXiv Detail & Related papers (2023-09-07T17:55:01Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z) - Regularizing Deep Networks with Semantic Data Augmentation [44.53483945155832]
We propose a novel semantic data augmentation algorithm to complement traditional approaches.
The proposed method is inspired by the intriguing property that deep networks are effective in learning linearized features.
We show that the proposed implicit semantic data augmentation (ISDA) algorithm amounts to minimizing a novel robust CE loss.
arXiv Detail & Related papers (2020-07-21T00:32:44Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z) - Supervised Domain Adaptation using Graph Embedding [86.3361797111839]
Domain adaptation methods assume that distributions between the two domains are shifted and attempt to realign them.
We propose a generic framework based on graph embedding.
We show that the proposed approach leads to a powerful Domain Adaptation framework.
arXiv Detail & Related papers (2020-03-09T12:25:13Z) - Generalized ODIN: Detecting Out-of-distribution Image without Learning
from Out-of-distribution Data [87.61504710345528]
We propose two strategies for freeing a neural network from tuning with OoD data, while improving its OoD detection performance.
We specifically propose to decompose confidence scoring as well as a modified input pre-processing method.
Our further analysis on a larger scale image dataset shows that the two types of distribution shifts, specifically semantic shift and non-semantic shift, present a significant difference.
arXiv Detail & Related papers (2020-02-26T04:18:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.