論文の概要: Learning to Cluster via Same-Cluster Queries
- arxiv url: http://arxiv.org/abs/2108.07383v1
- Date: Tue, 17 Aug 2021 00:37:11 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-18 13:13:59.572731
- Title: Learning to Cluster via Same-Cluster Queries
- Title(参考訳): 同一クラスタクエリによるクラスタの学習
- Authors: Yi Li, Yan Song, Qin Zhang
- Abstract要約: 我々は,同一クラスタクエリに応答可能なオラクルを用いて,データポイントのクラスタ化を学習する問題について検討する。
提案する2つのアルゴリズムは, 理論的保証を証明可能とし, 合成データと実世界のデータの両方に関する広範な実験により, 有効性を検証する。
- 参考スコア(独自算出の注目度): 26.284461833343403
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of learning to cluster data points using an oracle which
can answer same-cluster queries. Different from previous approaches, we do not
assume that the total number of clusters is known at the beginning and do not
require that the true clusters are consistent with a predefined objective
function such as the K-means. These relaxations are critical from the practical
perspective and, meanwhile, make the problem more challenging. We propose two
algorithms with provable theoretical guarantees and verify their effectiveness
via an extensive set of experiments on both synthetic and real-world data.
- Abstract(参考訳): 我々は,同一クラスタクエリに応答可能なoracleを用いて,クラスタデータポイントへの学習の問題を研究する。
従来のアプローチと異なり、クラスタの総数は最初から知られており、真のクラスタはK平均のような事前定義された目的関数と一致している必要はないと仮定する。
これらの緩和は実践的観点から批判的であり、一方で問題をより困難にしている。
理論的な保証を証明可能な2つのアルゴリズムを提案し,合成データと実世界データの両方について広範な実験を行い,その有効性を検証する。
関連論文リスト
- Stable Cluster Discrimination for Deep Clustering [7.175082696240088]
ディープクラスタリングは、インスタンスの表現(つまり、表現学習)を最適化し、固有のデータ分散を探索することができる。
結合された目的は、すべてのインスタンスが一様機能に崩壊する、自明な解決策を意味する。
本研究では,1段階クラスタリングにおいて,教師あり学習における一般的な識別タスクが不安定であることを示す。
新規な安定クラスタ識別(SeCu)タスクを提案し、それに応じて新しいハードネス対応クラスタリング基準を得ることができる。
論文 参考訳(メタデータ) (2023-11-24T06:43:26Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
観測されたラベルを用いてクラスタを復元する効率的なアルゴリズムを考案する。
本稿では,期待値と高い確率でこれらの下位境界との性能を一致させる最初のアルゴリズムであるIACを提案する。
論文 参考訳(メタデータ) (2023-06-18T08:46:06Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
オンラインディープクラスタリング(オンラインディープクラスタリング)とは、機能抽出ネットワークとクラスタリングモデルを組み合わせて、クラスタラベルを処理された各新しいデータポイントまたはバッチに割り当てることである。
オフラインメソッドよりも高速で汎用性が高いが、オンラインクラスタリングは、エンコーダがすべての入力を同じポイントにマッピングし、すべてを単一のクラスタに配置する、崩壊したソリューションに容易に到達することができる。
本稿では,データ拡張を必要としない手法を提案する。
論文 参考訳(メタデータ) (2023-03-29T08:23:26Z) - Neural Capacitated Clustering [6.155158115218501]
本稿では,クラスタセンターへのポイントの割り当て確率を予測するニューラルネットワークを学習する,容量クラスタリング問題(CCP)の新しい手法を提案する。
人工データと2つの実世界のデータセットに関する実験では、我々のアプローチは文学の最先端の数学的および解法よりも優れています。
論文 参考訳(メタデータ) (2023-02-10T09:33:44Z) - Oracle-guided Contrastive Clustering [28.066047266687058]
Oracle-Guided Contrastive Clustering(OCC)は,ユニークな要求を持ったオーラクルに対して,ペアワイズで同クラスタ"クエリを対話的に作成することで,クラスタリングを実現する。
私たちの知る限りでは、パーソナライズされたクラスタリングを実行する最初のディープフレームワークです。
論文 参考訳(メタデータ) (2022-11-01T12:05:12Z) - Deep Clustering: A Comprehensive Survey [53.387957674512585]
クラスタリング分析は、機械学習とデータマイニングにおいて必須の役割を果たす。
ディープ・クラスタリングは、ディープ・ニューラルネットワークを使ってクラスタリングフレンドリーな表現を学習することができるが、幅広いクラスタリングタスクに広く適用されている。
ディープクラスタリングに関する既存の調査は、主にシングルビューフィールドとネットワークアーキテクチャに焦点を当てており、クラスタリングの複雑なアプリケーションシナリオを無視している。
論文 参考訳(メタデータ) (2022-10-09T02:31:32Z) - Differentially-Private Clustering of Easy Instances [67.04951703461657]
異なるプライベートクラスタリングでは、個々のデータポイントに関する情報を公開せずに、$k$のクラスタセンターを特定することが目標だ。
我々は、データが"簡単"である場合にユーティリティを提供する実装可能な差分プライベートクラスタリングアルゴリズムを提供する。
我々は、非プライベートクラスタリングアルゴリズムを簡単なインスタンスに適用し、結果をプライベートに組み合わせることのできるフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-29T08:13:56Z) - Fast and Interpretable Consensus Clustering via Minipatch Learning [0.0]
IMPACC: Interpretable MiniPatch Adaptive Consensus Clustering を開発した。
我々は、信頼性と計算コストの両面で改善された観測のための適応型サンプリング手法を開発した。
その結果,より正確で解釈可能なクラスタソリューションが得られた。
論文 参考訳(メタデータ) (2021-10-05T22:39:28Z) - You Never Cluster Alone [150.94921340034688]
我々は、主流のコントラスト学習パラダイムをクラスタレベルのスキームに拡張し、同じクラスタに属するすべてのデータが統一された表現に寄与する。
分類変数の集合をクラスタ化代入信頼度として定義し、インスタンスレベルの学習トラックとクラスタレベルの学習トラックを関連付ける。
代入変数を再パラメータ化することで、TCCはエンドツーエンドでトレーニングされる。
論文 参考訳(メタデータ) (2021-06-03T14:59:59Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - reval: a Python package to determine best clustering solutions with
stability-based relative clustering validation [1.8129328638036126]
revalは、安定性ベースの相対クラスタリングバリデーションメソッドを活用して、最適なクラスタリングソリューションを決定するPythonパッケージである。
この研究は、教師付き学習を通じて、目に見えないデータのサブセットを複製するものとして、最高のクラスタリングソリューションを選択する安定性ベースの方法の開発を目的としている。
論文 参考訳(メタデータ) (2020-08-27T10:36:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。