Building ground states of Hubbard model by time-ordered bound-pair
injection
- URL: http://arxiv.org/abs/2108.07500v2
- Date: Wed, 29 Dec 2021 02:13:20 GMT
- Title: Building ground states of Hubbard model by time-ordered bound-pair
injection
- Authors: K. L. Zhang and Z. Song
- Abstract summary: We investigate the dynamic process of building ground states of a Hubbard model.
It is based on time-ordered quantum quenches for unidirectional hopping across a central and an auxiliary Hubbard model.
The exceptional point dynamics in non-Hermitian quantum mechanics allows the perfect transfer of electron pair from the reservoir to the central system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: According to energy band theory, ground states of a normal conductor and
insulator can be obtained by filling electrons individually into energy levels,
without any restrictions. It fails when the electron-electron correlation is
taken into account. In this work, we investigate the dynamic process of
building ground states of a Hubbard model. It is based on time-ordered quantum
quenches for unidirectional hopping across a central and an auxiliary Hubbard
model. We find that there exists a set of optimal parameters (chemical
potentials and pair binding energy) for the auxiliary system, which takes the
role of electron-pair reservoir. The exceptional point dynamics in
non-Hermitian quantum mechanics allows the perfect transfer of electron pair
from the reservoir to the central system, obtaining its ground states at
different fillings. The dynamics of time-ordered pair-filling not only provides
a method for correlated quantum state engineering, but also reveals the feature
of the ground state in an alternative way.
Related papers
- From Heisenberg to Hubbard: An initial state for the shallow quantum
simulation of correlated electrons [0.0]
We propose a three-step deterministic quantum routine to prepare an educated guess of the ground state of the Fermi-Hubbard model.
First, the ground state of the Heisenberg model is suitable for near-term quantum hardware.
Second, a general method is devised to convert a multi-spin-$frac12$ wave function into its fermionic version.
arXiv Detail & Related papers (2023-10-25T17:05:50Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer.
We calculate the binding energy curve of diatomic systems by leveraging Xanadu's Strawberry Fields photonics library.
Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond.
arXiv Detail & Related papers (2023-06-14T14:44:12Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Feasibility study on ground-state cooling and single-phonon readout of
trapped electrons using hybrid quantum systems [0.0]
Controlling the motional state of the trapped electron is a crucial issue.
We show that the ground-state cooling and the single-phonon readout of the motional state of the trapped electron are possible.
arXiv Detail & Related papers (2022-04-17T08:47:44Z) - Kinetically Constrained Quantum Dynamics in Superconducting Circuits [0.7734726150561088]
We study the dynamical properties of the bosonic quantum East model at low temperature.
We show that quantum information remains localized within decoherence times tunable with the parameters of the system.
We propose an implementation of the bosonic quantum East model based on state-of-the-art superconducting circuits.
arXiv Detail & Related papers (2021-12-15T19:00:02Z) - B-Spline basis Hartree-Fock method for arbitrary central potentials:
atoms, clusters and electron gas [0.0]
An implementation of the Hartree-Fock method capable of robust convergence for well-behaved arbitrary central potentials is presented.
For the Coulomb central potential, convergence patterns and energies are presented for a selection of atoms and negative ions.
For the harmonically confined electron-gas problem, comparisons are made with the Thomas-Fermi method and its accurate analytical solution.
arXiv Detail & Related papers (2021-08-12T16:57:21Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
We demonstrate the use of a D-Wave quantum annealer for the calculation of excited electronic states of molecular systems.
These simulations play an important role in a number of areas, such as photovoltaics, semiconductor technology and nanoscience.
arXiv Detail & Related papers (2021-07-01T01:02:17Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Theoretical proposals to measure resonator-induced modifications of the
electronic ground-state in doped quantum wells [13.569449459014104]
We investigate how virtual electronic excitations in quantum wells modify the ground-state charge distribution.
Our results provide a route toward a demonstration of cavity-induced modulation of ground-state electronic properties.
arXiv Detail & Related papers (2020-12-17T09:18:23Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Entanglement generation via power-of-SWAP operations between dynamic
electron-spin qubits [62.997667081978825]
Surface acoustic waves (SAWs) can create moving quantum dots in piezoelectric materials.
We show how electron-spin qubits located on dynamic quantum dots can be entangled.
arXiv Detail & Related papers (2020-01-15T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.