論文の概要: Traffic Prediction with Transfer Learning: A Mutual Information-based
Approach
- arxiv url: http://arxiv.org/abs/2303.07184v1
- Date: Mon, 13 Mar 2023 15:27:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-14 14:24:43.465611
- Title: Traffic Prediction with Transfer Learning: A Mutual Information-based
Approach
- Title(参考訳): 移動学習による交通予測:相互情報に基づくアプローチ
- Authors: Yunjie Huang, Xiaozhuang Song, Yuanshao Zhu, Shiyao Zhang and James
J.Q. Yu
- Abstract要約: そこで我々は,他の都市からのビッグデータを用いて交通予測を行う都市間交通予測手法であるTrafficTLを提案する。
TrafficTLは3つの実世界のデータセットの包括的なケーススタディによって評価され、最先端のベースラインを約8~25%上回る。
- 参考スコア(独自算出の注目度): 11.444576186559487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In modern traffic management, one of the most essential yet challenging tasks
is accurately and timely predicting traffic. It has been well investigated and
examined that deep learning-based Spatio-temporal models have an edge when
exploiting Spatio-temporal relationships in traffic data. Typically,
data-driven models require vast volumes of data, but gathering data in small
cities can be difficult owing to constraints such as equipment deployment and
maintenance costs. To resolve this problem, we propose TrafficTL, a cross-city
traffic prediction approach that uses big data from other cities to aid
data-scarce cities in traffic prediction. Utilizing a periodicity-based
transfer paradigm, it identifies data similarity and reduces negative transfer
caused by the disparity between two data distributions from distant cities. In
addition, the suggested method employs graph reconstruction techniques to
rectify defects in data from small data cities. TrafficTL is evaluated by
comprehensive case studies on three real-world datasets and outperforms the
state-of-the-art baseline by around 8 to 25 percent.
- Abstract(参考訳): 現代の交通管理において、最も重要でありながら困難なタスクの1つは、正確かつタイムリーなトラフィック予測である。
交通データにおける時空間関係を利用する場合,深層学習に基づく時空間モデルには限界があると考えられる。
通常、データ駆動モデルは膨大なデータを必要とするが、機器の配備やメンテナンスコストといった制約のため、小さな都市でデータを集めることは困難である。
この問題を解決するために,他の都市からのビッグデータを用いて交通予測を行う都市間交通予測手法であるTrafficTLを提案する。
周期性に基づく転送パラダイムを用いることで、データ類似性を識別し、離れた都市の2つのデータ分布の相違に起因する負の転送を低減する。
さらに, 提案手法では, 小都市からのデータの欠陥の修正にグラフ再構成を用いる。
TrafficTLは3つの実世界のデータセットの包括的なケーススタディによって評価され、最先端のベースラインを約8~25%上回る。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - BjTT: A Large-scale Multimodal Dataset for Traffic Prediction [49.93028461584377]
従来の交通予測手法は、交通トレンドを予測するために、過去の交通データに依存している。
本研究では,交通システムを記述するテキストと生成モデルを組み合わせることで,交通生成にどのように応用できるかを考察する。
本稿では,テキスト・トラフィック生成のための最初の拡散モデルChatTrafficを提案する。
論文 参考訳(メタデータ) (2024-03-08T04:19:56Z) - Cross-city Few-Shot Traffic Forecasting via Traffic Pattern Bank [15.123457772023238]
交通パターンバンク(TPB)を用いた都市間交通予測フレームワークを提案する。
TPBは、訓練済みのトラフィックパッチエンコーダを使用して、データ豊富な都市からの生のトラフィックデータを高次元空間に投影する。
隣接行列は、下流の時空間モデルで将来のトラフィックを予測するために構成される。
論文 参考訳(メタデータ) (2023-08-17T13:29:57Z) - LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting [65.71129509623587]
道路交通予測はスマートシティのイニシアチブにおいて重要な役割を担い、ディープラーニングの力によって大きな進歩を遂げている。
しかし、現在の公開データセットで達成される有望な結果は、現実的なシナリオには適用できないかもしれない。
カリフォルニアで合計8,600のセンサーと5年間の時間カバレッジを含む、LargeSTベンチマークデータセットを紹介します。
論文 参考訳(メタデータ) (2023-06-14T05:48:36Z) - Correlating sparse sensing for large-scale traffic speed estimation: A
Laplacian-enhanced low-rank tensor kriging approach [76.45949280328838]
本稿では,Laplacian enhanced Low-rank tensor (LETC) フレームワークを提案する。
次に,提案したモデルをネットワークワイド・クリグにスケールアップするために,複数の有効な数値手法を用いて効率的な解アルゴリズムを設計する。
論文 参考訳(メタデータ) (2022-10-21T07:25:57Z) - NodeTrans: A Graph Transfer Learning Approach for Traffic Prediction [33.299309349152146]
少ないデータでトラフィック予測を解くために,新しいトランスファー学習手法を提案する。
まず、異なる道路ネットワークのノード固有の時空間トラフィックパターンをキャプチャできる時空間グラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-07-04T10:06:20Z) - STCGAT: Spatial-temporal causal networks for complex urban road traffic
flow prediction [12.223433627287605]
交通データは非常に非線形であり、道路ノード間の複雑な空間的相関を持つ。
既存のアプローチでは、固定された道路ネットワークトポロジマップと独立した時系列モジュールを使用して、時空間相関をキャプチャする。
本稿では,グラフ注意ネットワーク(GAT)を介して交通ネットワークの空間依存性を捕捉し,交通データの因果関係を解析する新しい予測モデルを提案する。
論文 参考訳(メタデータ) (2022-03-21T06:38:34Z) - Few-Shot Traffic Prediction with Graph Networks using Locale as
Relational Inductive Biases [7.173242326298134]
多くの都市では、データ収集費用のため、利用可能なトラフィックデータの量は、最低限の要件以下である。
本稿では,グラフネットワーク(GN)に基づく深層学習モデルであるLocaleGnを開発した。
また、LocaleGnから学んだ知識が都市間で伝達可能であることも実証された。
論文 参考訳(メタデータ) (2022-03-08T09:46:50Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
我々はスイスのチューリッヒの都市ネットワーク内の地域でビデオ計測による実験キャンペーンを組織した。
我々は,既存のサーマルカメラからの測定を確実にすることで,交通の流れや走行時間の観点からの交通状況の把握に注力する。
本稿では,様々なデータソースの融合による移動時間を推定するために,単純かつ効率的な多重線形回帰(MLR)モデルを提案する。
論文 参考訳(メタデータ) (2021-08-02T08:13:57Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z) - Short-Term Traffic Forecasting Using High-Resolution Traffic Data [2.0625936401496237]
本稿では,高分解能(イベントベース)トラフィックデータを用いた交通予測のためのデータ駆動ツールキットを開発した。
提案手法は,アラブ首長国連邦アブダビの現実世界の交通ネットワークから得られた高分解能データを用いて検証した。
論文 参考訳(メタデータ) (2020-06-22T14:26:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。