Characterizing correlation within multipartite quantum systems via local
randomized measurements
- URL: http://arxiv.org/abs/2108.08045v2
- Date: Sat, 12 Feb 2022 03:32:48 GMT
- Title: Characterizing correlation within multipartite quantum systems via local
randomized measurements
- Authors: Zhenhuan Liu, Pei Zeng, You Zhou and Mile Gu
- Abstract summary: We introduce a much more experimentally accessible quantifier of total correlations, which can be estimated using only single-qubit measurements.
We provide a tool for proving multipartite correlations that can be applied to near-term quantum devices.
- Score: 1.5285690157187348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given a quantum system on many qubits split into a few different parties, how
many total correlations are there between these parties? Such a quantity, aimed
to measure the deviation of the global quantum state from an uncorrelated state
with the same local statistics, plays an important role in understanding
multipartite correlations within complex networks of quantum states. Yet, the
experimental access of this quantity remains challenging as it tends to be
non-linear, and hence often requires tomography which becomes quickly
intractable as dimensions of relevant quantum systems scale. Here, we introduce
a much more experimentally accessible quantifier of total correlations, which
can be estimated using only single-qubit measurements. It requires far fewer
measurements than state tomography and obviates the need to coherently
interfere multiple copies of a given state. Thus, we provide a tool for proving
multipartite correlations that can be applied to near-term quantum devices.
Related papers
- Measuring multipartite quantum correlations by thermodynamic work extraction [0.0]
We introduce a measure of multipartite quantum correlations based on the difference in extractable thermodynamic work by global operations and local operations and classical communication.
A distinguishing feature of the thermodynamic approach to multipartite quantum correlation is that we can compare the degree of quantum correlations with clear operational meaning.
This shows that the multipartite work deficit does not only highlight the fundamental connection between multipartite quantum correlations and quantum thermodynamics, but also serves as an efficiently-computable probe of the structures of quantum many-body systems.
arXiv Detail & Related papers (2024-07-04T16:58:30Z) - Learning quantum properties from short-range correlations using multi-task networks [3.7228085662092845]
We introduce a neural network model that can predict various quantum properties of many-body quantum states with constant correlation length.
The model is based on the technique of multi-task learning, which we show to offer several advantages over traditional single-task approaches.
arXiv Detail & Related papers (2023-10-18T08:53:23Z) - Quantitative bounds to propagation of quantum correlations in many-body
systems [0.0]
We establish limits to bipartite quantum correlations in many-body systems.
Results confirm that proliferation of classical information in the Universe suppresses quantum correlations.
arXiv Detail & Related papers (2023-10-04T00:24:06Z) - Multipartite entanglement theory with entanglement-nonincreasing
operations [91.3755431537592]
We extend the resource theory of entanglement for multipartite systems beyond the standard framework of local operations and classical communication.
We demonstrate that in this adjusted framework, the transformation rates between multipartite states are fundamentally dictated by the bipartite entanglement entropies of the respective quantum states.
arXiv Detail & Related papers (2023-05-30T12:53:56Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Bell inequalities with overlapping measurements [52.81011822909395]
We study Bell inequalities where measurements of different parties can have overlap.
This allows to accommodate problems in quantum information.
The scenarios considered show an interesting behaviour with respect to Hilbert space dimension, overlap, and symmetry.
arXiv Detail & Related papers (2023-03-03T18:11:05Z) - Complete characterization of quantum correlations by randomized
measurements [0.832184180529969]
We provide a method to measure any locally invariant property of quantum states using locally randomized measurements.
We implement these methods experimentally using pairs of entangled photons, characterizing their usefulness for quantum teleportation.
Our results can be applied to various quantum computing platforms, allowing simple analysis of correlations between arbitrary distant qubits.
arXiv Detail & Related papers (2022-12-15T15:22:28Z) - Robustness of non-locality in many-body open quantum systems [0.0]
Non-locality consists in the existence of non-classical correlations between local measurements.
We show that non-local correlations are present, can be detected and might be robust against noise in many-body open quantum systems.
arXiv Detail & Related papers (2022-02-24T13:05:36Z) - Scalable approach to many-body localization via quantum data [69.3939291118954]
Many-body localization is a notoriously difficult phenomenon from quantum many-body physics.
We propose a flexible neural network based learning approach that circumvents any computationally expensive step.
Our approach can be applied to large-scale quantum experiments to provide new insights into quantum many-body physics.
arXiv Detail & Related papers (2022-02-17T19:00:09Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.