Learning quantum properties from short-range correlations using multi-task networks
- URL: http://arxiv.org/abs/2310.11807v3
- Date: Tue, 2 Apr 2024 10:06:26 GMT
- Title: Learning quantum properties from short-range correlations using multi-task networks
- Authors: Ya-Dong Wu, Yan Zhu, Yuexuan Wang, Giulio Chiribella,
- Abstract summary: We introduce a neural network model that can predict various quantum properties of many-body quantum states with constant correlation length.
The model is based on the technique of multi-task learning, which we show to offer several advantages over traditional single-task approaches.
- Score: 3.7228085662092845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Characterizing multipartite quantum systems is crucial for quantum computing and many-body physics. The problem, however, becomes challenging when the system size is large and the properties of interest involve correlations among a large number of particles. Here we introduce a neural network model that can predict various quantum properties of many-body quantum states with constant correlation length, using only measurement data from a small number of neighboring sites. The model is based on the technique of multi-task learning, which we show to offer several advantages over traditional single-task approaches. Through numerical experiments, we show that multi-task learning can be applied to sufficiently regular states to predict global properties, like string order parameters, from the observation of short-range correlations, and to distinguish between quantum phases that cannot be distinguished by single-task networks. Remarkably, our model appears to be able to transfer information learnt from lower dimensional quantum systems to higher dimensional ones, and to make accurate predictions for Hamiltonians that were not seen in the training.
Related papers
- Entanglement-induced provable and robust quantum learning advantages [0.0]
We rigorously establish a noise-robust, unconditional quantum learning advantage in terms of expressivity, inference speed, and training efficiency.
Our proof is information-theoretic and pinpoints the origin of this advantage.
arXiv Detail & Related papers (2024-10-04T02:39:07Z) - Quantum reservoir computing on random regular graphs [0.0]
Quantum reservoir computing (QRC) is a low-complexity learning paradigm that combines input-driven many-body quantum systems with classical learning techniques.
We study information localization, dynamical quantum correlations, and the many-body structure of the disordered Hamiltonian.
Our findings thus provide guidelines for the optimal design of disordered analog quantum learning platforms.
arXiv Detail & Related papers (2024-09-05T16:18:03Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Multimodal deep representation learning for quantum cross-platform
verification [60.01590250213637]
Cross-platform verification, a critical undertaking in the realm of early-stage quantum computing, endeavors to characterize the similarity of two imperfect quantum devices executing identical algorithms.
We introduce an innovative multimodal learning approach, recognizing that the formalism of data in this task embodies two distinct modalities.
We devise a multimodal neural network to independently extract knowledge from these modalities, followed by a fusion operation to create a comprehensive data representation.
arXiv Detail & Related papers (2023-11-07T04:35:03Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Scalable approach to many-body localization via quantum data [69.3939291118954]
Many-body localization is a notoriously difficult phenomenon from quantum many-body physics.
We propose a flexible neural network based learning approach that circumvents any computationally expensive step.
Our approach can be applied to large-scale quantum experiments to provide new insights into quantum many-body physics.
arXiv Detail & Related papers (2022-02-17T19:00:09Z) - Probing Criticality in Quantum Spin Chains with Neural Networks [0.0]
We show that even neural networks with no hidden layers can be effectively trained to distinguish between magnetically ordered and disordered phases.
Our results extend to a wide class of interacting quantum many-body systems and illustrate the wide applicability of neural networks to many-body quantum physics.
arXiv Detail & Related papers (2020-05-05T12:34:50Z) - Semidefinite tests for quantum network topologies [0.9176056742068814]
Quantum networks play a major role in long-distance communication, quantum cryptography, clock synchronization, and distributed quantum computing.
The question of which correlations a given quantum network can give rise to, remains almost uncharted.
We show that constraints on the observable covariances, previously derived for the classical case, also hold for quantum networks.
arXiv Detail & Related papers (2020-02-13T22:36:46Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.