論文の概要: Analogical Learning in Tactical Decision Games
- arxiv url: http://arxiv.org/abs/2108.08227v1
- Date: Wed, 18 Aug 2021 16:35:43 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-19 16:17:22.606797
- Title: Analogical Learning in Tactical Decision Games
- Title(参考訳): 戦術決定ゲームにおけるアナロジー学習
- Authors: Tom Hinrichs, Greg Dunham and Ken Forbus
- Abstract要約: TDG(Tactical Decision Games)は、地図上でテキストとグラフィカルの両方に表される軍事紛争シナリオである。
我々は、TDGシナリオを解決するための軍事的タスクを提案する対話型協調システムの問題解決コンポーネントを開発した。
我々は、この問題解決コンポーネントを使ってアナログ学習を探索する。
- 参考スコア(独自算出の注目度): 0.3867363075280543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tactical Decision Games (TDGs) are military conflict scenarios presented both
textually and graphically on a map. These scenarios provide a challenging
domain for machine learning because they are open-ended, highly structured, and
typically contain many details of varying relevance. We have developed a
problem-solving component of an interactive companion system that proposes
military tasks to solve TDG scenarios using a combination of analogical
retrieval, mapping, and constraint propagation. We use this problem-solving
component to explore analogical learning.
In this paper, we describe the problems encountered in learning for this
domain, and the methods we have developed to address these, such as partition
constraints on analogical mapping correspondences and the use of incremental
remapping to improve robustness. We present the results of learning experiments
that show improvement in performance through the simple accumulation of
examples, despite a weak domain theory.
- Abstract(参考訳): TDG(Tactical Decision Games)は、地図上でテキストとグラフィカルの両方に表される軍事紛争シナリオである。
これらのシナリオは、オープンで高度に構造化されており、一般的にさまざまな関連性に関する多くの詳細が含まれているため、機械学習にとって困難な領域となります。
我々は,アナログ検索,マッピング,制約伝搬の組み合わせを用いて,TDGシナリオを解決するための軍事的タスクを提案する対話型協調システムの問題解決コンポーネントを開発した。
この問題解決の要素を使ってアナログ学習を探求する。
本稿では,この領域の学習における問題点と,類似写像対応の分割制約や,頑健性向上のための漸進的リマッピングの利用など,これらに対処する手法について述べる。
ドメイン理論が弱いにもかかわらず、単純な例の蓄積による性能向上を示す学習実験の結果を示す。
関連論文リスト
- Noise Contrastive Estimation-based Matching Framework for Low-Resource
Security Attack Pattern Recognition [49.536368818512116]
TTP(Tactics, Techniques and Procedures)は、サイバーセキュリティドメインにおける高度な攻撃パターンを表す。
そこで本研究では,TTPラベルへのテキストの割り当てが,両者の直接的な意味的類似性によって決定される,異なる学習パラダイムの問題を定式化する。
本稿では,効果的なサンプリングベース学習機構を備えたニューラルマッチングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-01-18T19:02:00Z) - A Novel Differentiable Loss Function for Unsupervised Graph Neural
Networks in Graph Partitioning [5.22145960878624]
グラフ分割問題はNPハードプロブレムとして認識される。
グラフ分割問題を解決するために,教師なしグラフニューラルネットワークを用いた新しいパイプラインを導入する。
我々は、現代の最先端技術に対する我々の方法論を厳格に評価し、メトリクス(カットとバランス)に重点を置いています。
論文 参考訳(メタデータ) (2023-12-11T23:03:17Z) - Scalable Learning of Intrusion Responses through Recursive Decomposition [0.0]
本稿では,ITインフラへの自動侵入応答と,攻撃者と防御者との相互作用を部分的に観察されたゲームとして検討する。
この問題を解決するために、我々は、強化学習と均衡に向けた自己プレイを通じて、攻撃戦略と防衛戦略が共進化するアプローチに従う。
近似により平衡を学習するDFSP(Decompositional Fictitious Self-Play)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-06T18:12:07Z) - Topic-driven Distant Supervision Framework for Macro-level Discourse
Parsing [72.14449502499535]
テキストの内部修辞構造を解析する作業は、自然言語処理において難しい問題である。
近年のニューラルモデルの発展にもかかわらず、トレーニングのための大規模で高品質なコーパスの欠如は大きな障害となっている。
近年の研究では、遠方の監督を用いてこの制限を克服しようと試みている。
論文 参考訳(メタデータ) (2023-05-23T07:13:51Z) - Combining Commonsense Reasoning and Knowledge Acquisition to Guide Deep
Learning in Robotics [8.566457170664926]
本稿では,認知システムの研究からインスピレーションを得たアーキテクチャについて述べる。
ディープネットワークモデルは、ロボット工学とAIにおける多くのパターン認識と意思決定タスクに使用されている。
我々のアーキテクチャは意思決定の信頼性を改善し、データ駆動のディープネットワークモデルのトレーニングに関わる労力を削減する。
論文 参考訳(メタデータ) (2022-01-25T12:24:22Z) - Cross-domain Imitation from Observations [50.669343548588294]
模擬学習は、専門家の行動を利用して訓練エージェントに適切な報酬関数を設計することの難しさを回避しようとする。
本稿では,専門家とエージェントMDPの相違点が存在する場合に,タスクを模倣する方法の問題について検討する。
このようなドメイン間の対応を学習するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-20T21:08:25Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
渋滞パターンを明示的に学習し、新しい「センス--学習--Reason--予測」フレームワークを考案する。
学習段階を2段階に分解することで、「学生」は「教師」から文脈的手がかりを学習し、衝突のない軌跡を生成する。
実験では,提案モデルが合成データセットにおいて衝突のない軌道予測を生成できることを実証する。
論文 参考訳(メタデータ) (2021-03-26T02:42:33Z) - Delta Schema Network in Model-based Reinforcement Learning [125.99533416395765]
この研究は、伝達学習の非効率性である人工知能の未解決問題に焦点が当てられている。
環境データからオブジェクトとアクション間の論理的関係を抽出できるスキーマネットワーク手法を拡張している。
本稿では,デルタネットワーク(DSN)をトレーニングし,環境の将来状態を予測し,前向きな報酬をもたらす計画行動を示すアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-17T15:58:25Z) - From Simulation to Real World Maneuver Execution using Deep
Reinforcement Learning [69.23334811890919]
深層強化学習(Deep Reinforcement Learning)は、さまざまな分野における多くの制御タスクを解決できることが証明されている。
これは主に、シミュレーションデータと実世界のデータ間のドメイン適応の欠如と、トレインデータセットとテストデータセットの区別の欠如による。
本稿では,エージェントが同時に訓練される複数の環境に基づくシステムを提案する。
論文 参考訳(メタデータ) (2020-05-13T14:22:20Z) - Plan-Space State Embeddings for Improved Reinforcement Learning [12.340412143459869]
提案手法は,計画や他の形態の実証から状態埋め込みを学習するための新しい手法である。
これらの埋め込みは、強化学習問題におけるロボット状態の強化としてどのように使用できるかを示す。
論文 参考訳(メタデータ) (2020-04-30T03:38:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。