論文の概要: Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance
- arxiv url: http://arxiv.org/abs/2103.14231v1
- Date: Fri, 26 Mar 2021 02:42:33 GMT
- ステータス: 処理完了
- システム内更新日: 2021-03-29 13:01:26.225625
- Title: Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance
- Title(参考訳): 衝突回避のための混雑認識多エージェント軌道予測
- Authors: Xu Xie, Chi Zhang, Yixin Zhu, Ying Nian Wu, Song-Chun Zhu
- Abstract要約: 渋滞パターンを明示的に学習し、新しい「センス--学習--Reason--予測」フレームワークを考案する。
学習段階を2段階に分解することで、「学生」は「教師」から文脈的手がかりを学習し、衝突のない軌跡を生成する。
実験では,提案モデルが合成データセットにおいて衝突のない軌道予測を生成できることを実証する。
- 参考スコア(独自算出の注目度): 110.63037190641414
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting agents' future trajectories plays a crucial role in modern AI
systems, yet it is challenging due to intricate interactions exhibited in
multi-agent systems, especially when it comes to collision avoidance. To
address this challenge, we propose to learn congestion patterns as contextual
cues explicitly and devise a novel "Sense--Learn--Reason--Predict" framework by
exploiting advantages of three different doctrines of thought, which yields the
following desirable benefits: (i) Representing congestion as contextual cues
via latent factors subsumes the concept of social force commonly used in
physics-based approaches and implicitly encodes the distance as a cost, similar
to the way a planning-based method models the environment. (ii) By decomposing
the learning phases into two stages, a "student" can learn contextual cues from
a "teacher" while generating collision-free trajectories. To make the framework
computationally tractable, we formulate it as an optimization problem and
derive an upper bound by leveraging the variational parametrization. In
experiments, we demonstrate that the proposed model is able to generate
collision-free trajectory predictions in a synthetic dataset designed for
collision avoidance evaluation and remains competitive on the commonly used
NGSIM US-101 highway dataset.
- Abstract(参考訳): エージェントの将来の軌道予測は、現代のAIシステムにおいて重要な役割を果たすが、特に衝突回避に関して、マルチエージェントシステムで現れる複雑な相互作用のために困難である。
To address this challenge, we propose to learn congestion patterns as contextual cues explicitly and devise a novel "Sense--Learn--Reason--Predict" framework by exploiting advantages of three different doctrines of thought, which yields the following desirable benefits: (i) Representing congestion as contextual cues via latent factors subsumes the concept of social force commonly used in physics-based approaches and implicitly encodes the distance as a cost, similar to the way a planning-based method models the environment.
2) 学習段階を2段階に分解することで, 「学生」は, 「教師」から文脈的手がかりを学習し, 衝突のない軌道を生成できる。
この枠組みを計算可能なものにするために, 最適化問題として定式化し, 変分パラメトリゼーションを利用した上界を導出する。
実験では, 衝突回避評価のために設計された合成データセットにおいて, NGSIM US-101ハイウェイデータセット上で, 衝突のない軌道予測が可能であることを示す。
関連論文リスト
- Collision Probability Distribution Estimation via Temporal Difference Learning [0.46085106405479537]
累積衝突確率分布を推定する先駆的なフレームワークであるCollisionProを紹介する。
我々は、強化学習の文脈において、我々の枠組みを定式化し、安全に配慮したエージェントの道を開く。
現実的な自律運転シミュレータを用いて,本フレームワークの総合的な検討を行った。
論文 参考訳(メタデータ) (2024-07-29T13:32:42Z) - Controllable Diverse Sampling for Diffusion Based Motion Behavior
Forecasting [11.106812447960186]
制御可能拡散軌道(CDT)と呼ばれる新しい軌道生成器を導入する。
CDTは、情報と社会的相互作用をトランスフォーマーに基づく条件記述拡散モデルに統合し、将来の軌跡の予測を導く。
マルチモーダル性を確保するため,直進,右折,左折などの軌道モードを指示する行動トークンを組み込んだ。
論文 参考訳(メタデータ) (2024-02-06T13:16:54Z) - SAFE-SIM: Safety-Critical Closed-Loop Traffic Simulation with Diffusion-Controllable Adversaries [94.84458417662407]
制御可能なクローズドループ安全クリティカルシミュレーションフレームワークであるSAFE-SIMを紹介する。
提案手法は,1)現実の環境を深く反映した現実的な長距離安全クリティカルシナリオの生成,2)より包括的でインタラクティブな評価のための制御可能な敵行動の提供,の2つの利点をもたらす。
複数のプランナにまたがるnuScenesとnuPlanデータセットを使用して、我々のフレームワークを実証的に検証し、リアリズムと制御性の両方の改善を実証した。
論文 参考訳(メタデータ) (2023-12-31T04:14:43Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
得られた知識を有向非巡回因果グラフの形で公開することを提案する。
また、この因果発見プロセスを状態依存的に設計し、潜在因果グラフのダイナミクスをモデル化する。
提案するフレームワークは,動的因果探索モジュール,因果符号化モジュール,予測モジュールの3つの部分から構成され,エンドツーエンドで訓練される。
論文 参考訳(メタデータ) (2023-09-30T20:59:42Z) - A Hierarchical Hybrid Learning Framework for Multi-agent Trajectory
Prediction [4.181632607997678]
深層学習(DL)と強化学習(RL)の階層的ハイブリッドフレームワークを提案する。
DLの段階では、トラフィックシーンは、トランスフォーマースタイルのGNNが異種相互作用を符号化するために採用される複数の中間スケールの異種グラフに分割される。
RLの段階では、DLの段階で予測される重要な将来点を利用して、交通シーンを局所的なサブシーンに分割する。
論文 参考訳(メタデータ) (2023-03-22T02:47:42Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
本稿では,3つの潜伏変数群からなる動的過程として,運動予測の因果的形式化を導入する。
我々は、因果グラフを近似するために、不変なメカニズムやスタイルの共創者の表現を分解するモジュラーアーキテクチャを考案する。
合成および実データを用いた実験結果から,提案した3つの成分は,学習した動き表現の頑健性と再利用性を大幅に向上することが示された。
論文 参考訳(メタデータ) (2021-11-29T18:59:09Z) - Probabilistic Trajectory Prediction with Structural Constraints [38.90152893402733]
この研究は、環境中の動的物体の運動軌跡を予測する問題に対処する。
最近の動きパターン予測の進歩は、しばしば観察された軌跡から動きパターンを外挿する機械学習技術に依存している。
本稿では,確率論的学習と制約付き軌道最適化を組み合わせた新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-09T03:48:14Z) - Social NCE: Contrastive Learning of Socially-aware Motion
Representations [87.82126838588279]
実験結果から, 提案手法は最近の軌道予測, 行動クローニング, 強化学習アルゴリズムの衝突速度を劇的に低減することがわかった。
本手法は,ニューラルネットワークの設計に関する仮定をほとんど示さないため,神経運動モデルのロバスト性を促進する汎用的手法として使用できる。
論文 参考訳(メタデータ) (2020-12-21T22:25:06Z) - Multimodal Trajectory Prediction via Topological Invariance for
Navigation at Uncontrolled Intersections [45.508973373913946]
道路交差点において,信号機や信号機を使わずに複数の非通信的合理的エージェント間の分散ナビゲーションに着目した。
我々の重要な洞察は、交差点の幾何学的構造と、効率的に動くエージェントのインセンティブが衝突を避け(合理性)、起こりうる行動の空間を減少させるということである。
マルチエージェント交差点シーンにおける高次モードの軌道表現を再構成するデータ駆動型軌道予測機構であるMTPを設計する。
論文 参考訳(メタデータ) (2020-11-08T02:56:42Z) - Risk-Sensitive Sequential Action Control with Multi-Modal Human
Trajectory Forecasting for Safe Crowd-Robot Interaction [55.569050872780224]
本稿では,リスクに敏感な最適制御に基づく安全な群集ロボットインタラクションのためのオンラインフレームワークを提案し,そのリスクをエントロピーリスク尺度でモデル化する。
私たちのモジュラーアプローチは、クラウドとロボットの相互作用を学習ベースの予測とモデルベースの制御に分離します。
シミュレーション研究と実世界の実験により、このフレームワークは、現場にいる50人以上の人間との衝突を避けながら、安全で効率的なナビゲーションを実現することができることが示された。
論文 参考訳(メタデータ) (2020-09-12T02:02:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。