Neural Operator: Learning Maps Between Function Spaces
- URL: http://arxiv.org/abs/2108.08481v6
- Date: Thu, 2 May 2024 17:19:54 GMT
- Title: Neural Operator: Learning Maps Between Function Spaces
- Authors: Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart, Anima Anandkumar,
- Abstract summary: We propose a generalization of neural networks to learn operators, termed neural operators, that map between infinite dimensional function spaces.
We prove a universal approximation theorem for our proposed neural operator, showing that it can approximate any given nonlinear continuous operator.
An important application for neural operators is learning surrogate maps for the solution operators of partial differential equations.
- Score: 75.93843876663128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The classical development of neural networks has primarily focused on learning mappings between finite dimensional Euclidean spaces or finite sets. We propose a generalization of neural networks to learn operators, termed neural operators, that map between infinite dimensional function spaces. We formulate the neural operator as a composition of linear integral operators and nonlinear activation functions. We prove a universal approximation theorem for our proposed neural operator, showing that it can approximate any given nonlinear continuous operator. The proposed neural operators are also discretization-invariant, i.e., they share the same model parameters among different discretization of the underlying function spaces. Furthermore, we introduce four classes of efficient parameterization, viz., graph neural operators, multi-pole graph neural operators, low-rank neural operators, and Fourier neural operators. An important application for neural operators is learning surrogate maps for the solution operators of partial differential equations (PDEs). We consider standard PDEs such as the Burgers, Darcy subsurface flow, and the Navier-Stokes equations, and show that the proposed neural operators have superior performance compared to existing machine learning based methodologies, while being several orders of magnitude faster than conventional PDE solvers.
Related papers
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.
To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.
Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Neural Operators with Localized Integral and Differential Kernels [77.76991758980003]
We present a principled approach to operator learning that can capture local features under two frameworks.
We prove that we obtain differential operators under an appropriate scaling of the kernel values of CNNs.
To obtain local integral operators, we utilize suitable basis representations for the kernels based on discrete-continuous convolutions.
arXiv Detail & Related papers (2024-02-26T18:59:31Z) - Operator Learning: Algorithms and Analysis [8.305111048568737]
Operator learning refers to the application of ideas from machine learning to approximate operators mapping between Banach spaces of functions.
This review focuses on neural operators, built on the success of deep neural networks in the approximation of functions defined on finite dimensional Euclidean spaces.
arXiv Detail & Related papers (2024-02-24T04:40:27Z) - Resolution-Invariant Image Classification based on Fourier Neural
Operators [1.3190581566723918]
We investigate the use of generalization Neural Operators (FNOs) for image classification in comparison to standard Convolutional Neural Networks (CNNs)
We derive the FNO architecture as an example for continuous and Fr'echet-differentiable neural operators on Lebesgue spaces.
arXiv Detail & Related papers (2023-04-02T10:23:36Z) - MIONet: Learning multiple-input operators via tensor product [2.5426761219054312]
We study the operator regression via neural networks for multiple-input operators defined on the product of Banach spaces.
Based on our theory and a low-rank approximation, we propose a novel neural operator, MIONet, to learn multiple-input operators.
arXiv Detail & Related papers (2022-02-12T20:37:04Z) - Pseudo-Differential Neural Operator: Generalized Fourier Neural Operator
for Learning Solution Operators of Partial Differential Equations [14.43135909469058]
We propose a novel textitpseudo-differential integral operator (PDIO) to analyze and generalize the Fourier integral operator in FNO.
We experimentally validate the effectiveness of the proposed model by utilizing Darcy flow and the Navier-Stokes equation.
arXiv Detail & Related papers (2022-01-28T07:22:32Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
We formulate a new neural operator by parameterizing the integral kernel directly in Fourier space.
We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation.
It is up to three orders of magnitude faster compared to traditional PDE solvers.
arXiv Detail & Related papers (2020-10-18T00:34:21Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Neural Operator: Graph Kernel Network for Partial Differential Equations [57.90284928158383]
This work is to generalize neural networks so that they can learn mappings between infinite-dimensional spaces (operators)
We formulate approximation of the infinite-dimensional mapping by composing nonlinear activation functions and a class of integral operators.
Experiments confirm that the proposed graph kernel network does have the desired properties and show competitive performance compared to the state of the art solvers.
arXiv Detail & Related papers (2020-03-07T01:56:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.