Neural Operators with Localized Integral and Differential Kernels
- URL: http://arxiv.org/abs/2402.16845v2
- Date: Sat, 8 Jun 2024 22:16:13 GMT
- Title: Neural Operators with Localized Integral and Differential Kernels
- Authors: Miguel Liu-Schiaffini, Julius Berner, Boris Bonev, Thorsten Kurth, Kamyar Azizzadenesheli, Anima Anandkumar,
- Abstract summary: We present a principled approach to operator learning that can capture local features under two frameworks.
We prove that we obtain differential operators under an appropriate scaling of the kernel values of CNNs.
To obtain local integral operators, we utilize suitable basis representations for the kernels based on discrete-continuous convolutions.
- Score: 77.76991758980003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural operators learn mappings between function spaces, which is practical for learning solution operators of PDEs and other scientific modeling applications. Among them, the Fourier neural operator (FNO) is a popular architecture that performs global convolutions in the Fourier space. However, such global operations are often prone to over-smoothing and may fail to capture local details. In contrast, convolutional neural networks (CNN) can capture local features but are limited to training and inference at a single resolution. In this work, we present a principled approach to operator learning that can capture local features under two frameworks by learning differential operators and integral operators with locally supported kernels. Specifically, inspired by stencil methods, we prove that we obtain differential operators under an appropriate scaling of the kernel values of CNNs. To obtain local integral operators, we utilize suitable basis representations for the kernels based on discrete-continuous convolutions. Both these approaches preserve the properties of operator learning and, hence, the ability to predict at any resolution. Adding our layers to FNOs significantly improves their performance, reducing the relative L2-error by 34-72% in our experiments, which include a turbulent 2D Navier-Stokes and the spherical shallow water equations.
Related papers
- Beyond Regular Grids: Fourier-Based Neural Operators on Arbitrary Domains [13.56018270837999]
We propose a simple method to extend neural operators to arbitrary domains.
An efficient implementation* of such direct spectral evaluations is coupled with existing neural operator models.
We demonstrate that the proposed method allows us to extend neural operators to arbitrary point distributions with significant gains in training speed over baselines.
arXiv Detail & Related papers (2023-05-31T09:01:20Z) - Nonlocality and Nonlinearity Implies Universality in Operator Learning [8.83910715280152]
Neural operator architectures approximate operators between infinite-dimensional Banach spaces of functions.
It is clear that any general approximation of operators between spaces of functions must be both nonlocal and nonlinear.
We show how these two attributes may be combined in a simple way to deduce universal approximation.
arXiv Detail & Related papers (2023-04-26T01:03:11Z) - Convolutional Neural Operators for robust and accurate learning of PDEs [11.562748612983956]
We present novel adaptations for convolutional neural networks to process functions as inputs and outputs.
The resulting architecture is termed as convolutional neural operators (CNOs)
We prove a universality theorem to show that CNOs can approximate operators arising in PDEs to desired accuracy.
arXiv Detail & Related papers (2023-02-02T15:54:45Z) - On Feature Learning in Neural Networks with Global Convergence
Guarantees [49.870593940818715]
We study the optimization of wide neural networks (NNs) via gradient flow (GF)
We show that when the input dimension is no less than the size of the training set, the training loss converges to zero at a linear rate under GF.
We also show empirically that, unlike in the Neural Tangent Kernel (NTK) regime, our multi-layer model exhibits feature learning and can achieve better generalization performance than its NTK counterpart.
arXiv Detail & Related papers (2022-04-22T15:56:43Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Factorized Fourier Neural Operators [77.47313102926017]
The Factorized Fourier Neural Operator (F-FNO) is a learning-based method for simulating partial differential equations.
We show that our model maintains an error rate of 2% while still running an order of magnitude faster than a numerical solver.
arXiv Detail & Related papers (2021-11-27T03:34:13Z) - Neural Operator: Learning Maps Between Function Spaces [75.93843876663128]
We propose a generalization of neural networks to learn operators, termed neural operators, that map between infinite dimensional function spaces.
We prove a universal approximation theorem for our proposed neural operator, showing that it can approximate any given nonlinear continuous operator.
An important application for neural operators is learning surrogate maps for the solution operators of partial differential equations.
arXiv Detail & Related papers (2021-08-19T03:56:49Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
We formulate a new neural operator by parameterizing the integral kernel directly in Fourier space.
We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation.
It is up to three orders of magnitude faster compared to traditional PDE solvers.
arXiv Detail & Related papers (2020-10-18T00:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.