Pseudo-Differential Neural Operator: Generalized Fourier Neural Operator
for Learning Solution Operators of Partial Differential Equations
- URL: http://arxiv.org/abs/2201.11967v3
- Date: Mon, 4 Mar 2024 11:12:38 GMT
- Title: Pseudo-Differential Neural Operator: Generalized Fourier Neural Operator
for Learning Solution Operators of Partial Differential Equations
- Authors: Jin Young Shin, Jae Yong Lee, Hyung Ju Hwang
- Abstract summary: We propose a novel textitpseudo-differential integral operator (PDIO) to analyze and generalize the Fourier integral operator in FNO.
We experimentally validate the effectiveness of the proposed model by utilizing Darcy flow and the Navier-Stokes equation.
- Score: 14.43135909469058
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Learning the mapping between two function spaces has garnered considerable
research attention. However, learning the solution operator of partial
differential equations (PDEs) remains a challenge in scientific computing.
Fourier neural operator (FNO) was recently proposed to learn solution
operators, and it achieved an excellent performance. In this study, we propose
a novel \textit{pseudo-differential integral operator} (PDIO) to analyze and
generalize the Fourier integral operator in FNO. PDIO is inspired by a
pseudo-differential operator, which is a generalized differential operator
characterized by a certain symbol. We parameterize this symbol using a neural
network and demonstrate that the neural network-based symbol is contained in a
smooth symbol class. Subsequently, we verify that the PDIO is a bounded linear
operator, and thus is continuous in the Sobolev space. We combine the PDIO with
the neural operator to develop a \textit{pseudo-differential neural operator}
(PDNO) and learn the nonlinear solution operator of PDEs. We experimentally
validate the effectiveness of the proposed model by utilizing Darcy flow and
the Navier-Stokes equation. The obtained results indicate that the proposed
PDNO outperforms the existing neural operator approaches in most experiments.
Related papers
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
We introduce DimOL (Dimension-aware Operator Learning), drawing insights from dimensional analysis.
To implement DimOL, we propose the ProdLayer, which can be seamlessly integrated into FNO-based and Transformer-based PDE solvers.
Empirically, DimOL models achieve up to 48% performance gain within the PDE datasets.
arXiv Detail & Related papers (2024-10-08T10:48:50Z) - Neural Operators with Localized Integral and Differential Kernels [77.76991758980003]
We present a principled approach to operator learning that can capture local features under two frameworks.
We prove that we obtain differential operators under an appropriate scaling of the kernel values of CNNs.
To obtain local integral operators, we utilize suitable basis representations for the kernels based on discrete-continuous convolutions.
arXiv Detail & Related papers (2024-02-26T18:59:31Z) - Operator-learning-inspired Modeling of Neural Ordinary Differential
Equations [38.17903151426809]
We present a neural operator-based method to define the time-derivative term.
In our experiments with general downstream tasks, our method significantly outperforms existing methods.
arXiv Detail & Related papers (2023-12-16T00:29:15Z) - Hyena Neural Operator for Partial Differential Equations [9.438207505148947]
Recent advances in deep learning have provided a new approach to solving partial differential equations that involves the use of neural operators.
This study utilizes a neural operator called Hyena, which employs a long convolutional filter that is parameterized by a multilayer perceptron.
Our findings indicate Hyena can serve as an efficient and accurate model for partial learning differential equations solution operator.
arXiv Detail & Related papers (2023-06-28T19:45:45Z) - Resolution-Invariant Image Classification based on Fourier Neural
Operators [1.3190581566723918]
We investigate the use of generalization Neural Operators (FNOs) for image classification in comparison to standard Convolutional Neural Networks (CNNs)
We derive the FNO architecture as an example for continuous and Fr'echet-differentiable neural operators on Lebesgue spaces.
arXiv Detail & Related papers (2023-04-02T10:23:36Z) - Factorized Fourier Neural Operators [77.47313102926017]
The Factorized Fourier Neural Operator (F-FNO) is a learning-based method for simulating partial differential equations.
We show that our model maintains an error rate of 2% while still running an order of magnitude faster than a numerical solver.
arXiv Detail & Related papers (2021-11-27T03:34:13Z) - Neural Operator: Learning Maps Between Function Spaces [75.93843876663128]
We propose a generalization of neural networks to learn operators, termed neural operators, that map between infinite dimensional function spaces.
We prove a universal approximation theorem for our proposed neural operator, showing that it can approximate any given nonlinear continuous operator.
An important application for neural operators is learning surrogate maps for the solution operators of partial differential equations.
arXiv Detail & Related papers (2021-08-19T03:56:49Z) - Incorporating NODE with Pre-trained Neural Differential Operator for
Learning Dynamics [73.77459272878025]
We propose to enhance the supervised signal in learning dynamics by pre-training a neural differential operator (NDO)
NDO is pre-trained on a class of symbolic functions, and it learns the mapping between the trajectory samples of these functions to their derivatives.
We provide theoretical guarantee on that the output of NDO can well approximate the ground truth derivatives by proper tuning the complexity of the library.
arXiv Detail & Related papers (2021-06-08T08:04:47Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
We formulate a new neural operator by parameterizing the integral kernel directly in Fourier space.
We perform experiments on Burgers' equation, Darcy flow, and Navier-Stokes equation.
It is up to three orders of magnitude faster compared to traditional PDE solvers.
arXiv Detail & Related papers (2020-10-18T00:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.