論文の概要: Monitoring weeder robots and anticipating their functioning by using
advanced topological data analysis
- arxiv url: http://arxiv.org/abs/2108.08570v1
- Date: Thu, 19 Aug 2021 09:22:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-20 14:21:12.306150
- Title: Monitoring weeder robots and anticipating their functioning by using
advanced topological data analysis
- Title(参考訳): 先端トポロジカルデータ解析による雑草ロボットの監視と機能予測
- Authors: Tarek Frahi, Abel Sancarlos, Matthieu Galle, Xavier Beaulieu, Anne
Chambard, Antonio Falco, Elias Cueto, and Francisco Chinesta
- Abstract要約: 本稿では,雑草自律ロボットが作業中に追従する複雑な軌跡のトポロジ的内容を分析することを目的とする。
我々は,これらの軌道のトポロジ的記述子は,ロボット環境やロボット状態の影響を受け,維持作業に影響を及ぼすことを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The present paper aims at analyzing the topological content of the complex
trajectories that weeder-autonomous robots follow in operation. We will prove
that the topological descriptors of these trajectories are affected by the
robot environment as well as by the robot state, with respect to maintenance
operations. Topological Data Analysis will be used for extracting the
trajectory descriptors, based on homology persistence. Then, appropriate
metrics will be applied in order to compare that topological representation of
the trajectories, for classifying them or for making efficient pattern
recognition.
- Abstract(参考訳): 本稿では,雑草自動走行ロボットが運用する複雑な軌道のトポロジカルな内容を分析することを目的とした。
我々は,これらの軌道のトポロジ的記述子は,ロボット環境やロボット状態の影響を受け,維持作業に影響を及ぼすことを実証する。
トポロジデータ分析は、ホモロジーの持続性に基づいた軌道記述子抽出に使用される。
次に、その軌跡のトポロジカル表現を比較し、それらを分類したり、効率的なパターン認識を行うために適切なメトリクスを適用する。
関連論文リスト
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
位相的正しさは多くの画像分割タスクにおいて重要な役割を果たす。
ほとんどのネットワークは、Diceのようなピクセル単位の損失関数を使って、トポロジカルな精度を無視して訓練されている。
トポロジ的に正確な画像セグメンテーションのための新しいグラフベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-05T16:20:14Z) - Morphological Symmetries in Robotics [45.32599550966704]
形態的対称性は ロボットの形態の固有の特性です
これらの対称性は、ロボットの状態空間とセンサーの測定にまで拡張される。
データ駆動型手法では, 機械学習モデルのサンプル効率と一般化を, モルフォロジー対称性により向上させることができることを示す。
解析手法の文脈では、ロボットの力学を低次元独立力学の重ね合わせに分解するために抽象調和解析を用いる。
論文 参考訳(メタデータ) (2024-02-23T17:21:21Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - Vehicle Motion Forecasting using Prior Information and Semantic-assisted
Occupancy Grid Maps [6.99274104609965]
運動は、センサーデータの不確実性、未来の非決定論的性質、複雑な振る舞いによって、自動運転車にとって困難なタスクである。
本稿では,シーンを動的占有グリッドマップ(DOGM)として表現することで,この問題に対処する。
本研究では,車両の挙動を予測するための時間的および確率的アプローチを組み合わせた新しい枠組みを提案する。
論文 参考訳(メタデータ) (2023-08-08T14:49:44Z) - Persistence-based operators in machine learning [62.997667081978825]
永続性に基づくニューラルネットワークレイヤのクラスを導入します。
永続化ベースのレイヤにより、ユーザは、データによって尊重される対称性に関する知識を容易に注入でき、学習可能なウェイトを備え、最先端のニューラルネットワークアーキテクチャで構成できる。
論文 参考訳(メタデータ) (2022-12-28T18:03:41Z) - Human-Robot Collaboration and Machine Learning: A Systematic Review of
Recent Research [69.48907856390834]
人間ロボットコラボレーション(Human-robot collaboration、HRC)とは、人間とロボットの相互作用を探索する手法である。
本稿では,HRCの文脈における機械学習技術の利用に関する詳細な文献レビューを提案する。
論文 参考訳(メタデータ) (2021-10-14T15:14:33Z) - Human Trajectory Prediction via Counterfactual Analysis [87.67252000158601]
複雑な動的環境における人間の軌道予測は、自律走行車やインテリジェントロボットにおいて重要な役割を果たす。
既存のほとんどの手法は、歴史の軌跡や環境からの相互作用の手がかりから行動の手がかりによって将来の軌跡を予測することを学習している。
本研究では,予測軌跡と入力手がかりの因果関係を調べるために,人間の軌跡予測に対する反実解析手法を提案する。
論文 参考訳(メタデータ) (2021-07-29T17:41:34Z) - Structured Prediction for CRiSP Inverse Kinematics Learning with
Misspecified Robot Models [39.513301957826435]
本稿では,データ駆動戦略とフォワードキネマティックス関数を組み合わせた構造化予測アルゴリズムを提案する。
提案手法により、予測された関節構成がロボットの制約内に適切に収まることが保証される。
論文 参考訳(メタデータ) (2021-02-25T15:39:33Z) - Engineering Topological Phases Guided by Statistical and Machine
Learning Methods [0.0]
本稿では,位相図の事前知識を必要とせず,一般格子の位相モデルを構築する統計的手法を提案する。
ランダム分布から厳密な結合パラメータベクトルをサンプリングすることにより、対応するトポロジカル指数にラベル付けしたデータセットを得る。
このラベル付きデータは、トポロジカル分類に最も関係したパラメータを抽出し、最も可能性が高い値を見つけるために分析される。
本稿では,Altland-Zirnbauer (AZ) クラス A におけるハニカム格子の原型的トポロジカル絶縁体として,Haldane モデルの予測という概念の証明として提示する。
論文 参考訳(メタデータ) (2020-08-25T18:00:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。