論文の概要: Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation
- arxiv url: http://arxiv.org/abs/2411.03228v1
- Date: Tue, 05 Nov 2024 16:20:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-06 15:00:47.559436
- Title: Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation
- Title(参考訳): Topograph: 画像セグメンテーションを厳格に保存する効率的なグラフベースのフレームワーク
- Authors: Laurin Lux, Alexander H. Berger, Alexander Weers, Nico Stucki, Daniel Rueckert, Ulrich Bauer, Johannes C. Paetzold,
- Abstract要約: 位相的正しさは多くの画像分割タスクにおいて重要な役割を果たす。
ほとんどのネットワークは、Diceのようなピクセル単位の損失関数を使って、トポロジカルな精度を無視して訓練されている。
トポロジ的に正確な画像セグメンテーションのための新しいグラフベースのフレームワークを提案する。
- 参考スコア(独自算出の注目度): 78.54656076915565
- License:
- Abstract: Topological correctness plays a critical role in many image segmentation tasks, yet most networks are trained using pixel-wise loss functions, such as Dice, neglecting topological accuracy. Existing topology-aware methods often lack robust topological guarantees, are limited to specific use cases, or impose high computational costs. In this work, we propose a novel, graph-based framework for topologically accurate image segmentation that is both computationally efficient and generally applicable. Our method constructs a component graph that fully encodes the topological information of both the prediction and ground truth, allowing us to efficiently identify topologically critical regions and aggregate a loss based on local neighborhood information. Furthermore, we introduce a strict topological metric capturing the homotopy equivalence between the union and intersection of prediction-label pairs. We formally prove the topological guarantees of our approach and empirically validate its effectiveness on binary and multi-class datasets. Our loss demonstrates state-of-the-art performance with up to fivefold faster loss computation compared to persistent homology methods.
- Abstract(参考訳): 位相的正しさは多くの画像分割タスクにおいて重要な役割を果たすが、ほとんどのネットワークはDiceのような画素単位の損失関数を用いて訓練されており、位相的精度は無視されている。
既存のトポロジ対応手法は、しばしば堅牢なトポロジカル保証を欠いているか、特定のユースケースに限定されているか、高い計算コストを課している。
本研究では, 計算効率が高く, 一般に適用可能な, 位相的精度の高い画像分割のための新しいグラフベースフレームワークを提案する。
提案手法は, 局所的な局所的な情報に基づいて, 局所的に重要な領域を効率的に同定し, 損失を集約し, 予測と地上の真理の両方のトポロジ情報を完全エンコードする構成グラフを構築する。
さらに、予測ラベル対の結合と交叉のホモトピー同値を求める厳密なトポロジカル計量を導入する。
我々は、我々のアプローチのトポロジ的保証を正式に証明し、バイナリとマルチクラスのデータセット上でその効果を実証的に検証する。
我々の損失は、持続的ホモロジー法に比べて最大5倍高速な損失計算で最先端の性能を示す。
関連論文リスト
- Enhancing Boundary Segmentation for Topological Accuracy with Skeleton-based Methods [7.646983689651424]
位相整合性は、直交画像の境界セグメンテーションの課題において重要な役割を果たす。
本稿では,各物体の形状と画素の位相的意義を考慮に入れた新たな損失関数であるSkea-Topo Aware Losを提案する。
実験により, この手法は, 13 の最先端手法と比較して, VI において最大 7 点まで位相整合性を向上させることが証明された。
論文 参考訳(メタデータ) (2024-04-29T09:27:31Z) - Graph Vertex Embeddings: Distance, Regularization and Community Detection [0.0]
グラフ埋め込みは、低次元空間における複雑なネットワーク構造を表現する強力なツールとして登場した。
異なる頂点間の位相的距離を忠実に捉えるフレキシブル距離関数の族を示す。
ベンチマークデータセットのホスト上でコミュニティ検出を行うことにより,提案手法の有効性を評価する。
論文 参考訳(メタデータ) (2024-04-09T09:03:53Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
局所グラフコントラスト学習(Local-GCL)という,シンプルだが効果的なコントラストモデルを導入する。
その単純さにもかかわらず、Local-GCLは、様々なスケールと特性を持つグラフ上の自己教師付きノード表現学習タスクにおいて、非常に競争力のある性能を達成する。
論文 参考訳(メタデータ) (2022-12-08T23:36:00Z) - BuyTheDips: PathLoss for improved topology-preserving deep
learning-based image segmentation [1.8899300124593648]
本稿では,新しいリーク損失であるPathlossに依存する新しいディープイメージセグメンテーション手法を提案する。
本手法は,異なる性質の2つの代表的なデータセットに対して,最先端のトポロジ認識手法より優れる。
論文 参考訳(メタデータ) (2022-07-23T07:19:30Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - Image Segmentation with Homotopy Warping [10.093435601073484]
位相的正しさは、微細な構造を持つ画像のセグメンテーションに不可欠である。
ディジタルトポロジの理論を活用することで、トポロジにとって重要な画像中の位置を特定する。
本稿では,位相的精度を向上させるために,深部画像分割ネットワークをトレーニングするための新たなホモトピーワーピング損失を提案する。
論文 参考訳(メタデータ) (2021-12-15T00:33:15Z) - Topology-Aware Segmentation Using Discrete Morse Theory [38.65353702366932]
深部画像セグメンテーションネットワークを訓練し、位相精度を向上させる新しい手法を提案する。
1次元骨格や2次元パッチなど,位相的精度に重要なグローバル構造を明らかにする。
多様なデータセットに対して,DICEスコアとトポロジカルメトリクスの両方で優れた性能を示す。
論文 参考訳(メタデータ) (2021-03-18T02:47:21Z) - Progressive Spatio-Temporal Graph Convolutional Network for
Skeleton-Based Human Action Recognition [97.14064057840089]
本稿では,グラフ畳み込みネットワークのためのコンパクトで問題固有のネットワークを,段階的に自動的に見つける手法を提案する。
骨格に基づく人体行動認識のための2つのデータセットの実験結果から,提案手法は競争力あるいはより優れた分類性能を有することが示された。
論文 参考訳(メタデータ) (2020-11-11T09:57:49Z) - Structured Landmark Detection via Topology-Adapting Deep Graph Learning [75.20602712947016]
解剖学的顔と医学的ランドマーク検出のための新しいトポロジ適応深層グラフ学習手法を提案する。
提案手法は局所像特徴と大域形状特徴の両方を利用するグラフ信号を構成する。
3つの公開顔画像データセット(WFLW、300W、COFW-68)と3つの現実世界のX線医学データセット(ケパロメトリ、ハンド、ペルビス)で実験を行った。
論文 参考訳(メタデータ) (2020-04-17T11:55:03Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
弱教師付きセマンティックセグメンテーションは、トレーニングのためにピクセル単位のラベル情報が提供されないため、難しい課題である。
このようなペア関係を学習するための反復アルゴリズムを提案する。
本稿では,提案アルゴリズムが最先端手法に対して好適に動作することを示す。
論文 参考訳(メタデータ) (2020-02-19T10:32:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。