論文の概要: Efficient Contextualization using Top-k Operators for Question Answering
over Knowledge Graphs
- arxiv url: http://arxiv.org/abs/2108.08597v1
- Date: Thu, 19 Aug 2021 10:06:14 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-20 14:26:55.311434
- Title: Efficient Contextualization using Top-k Operators for Question Answering
over Knowledge Graphs
- Title(参考訳): 知識グラフを用いた質問応答のためのトップk演算子を用いた効率的な文脈化
- Authors: Philipp Christmann, Rishiraj Saha Roy, Gerhard Weikum
- Abstract要約: 本研究は,KB対応信号を用いて検索空間の無関係な部分を抽出する効率的なECQAを提案する。
最近の2つのQAベンチマークによる実験では、解答の有無、検索空間のサイズ、ランタイムに関して、最先端のベースラインよりもECQAの方が優れていることが示されている。
- 参考スコア(独自算出の注目度): 24.520002698010856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Answering complex questions over knowledge bases (KB-QA) faces huge input
data with billions of facts, involving millions of entities and thousands of
predicates. For efficiency, QA systems first reduce the answer search space by
identifying a set of facts that is likely to contain all answers and relevant
cues. The most common technique is to apply named entity disambiguation (NED)
systems to the question, and retrieve KB facts for the disambiguated entities.
This work presents ECQA, an efficient method that prunes irrelevant parts of
the search space using KB-aware signals. ECQA is based on top-k query
processing over score-ordered lists of KB items that combine signals about
lexical matching, relevance to the question, coherence among candidate items,
and connectivity in the KB graph. Experiments with two recent QA benchmarks
demonstrate the superiority of ECQA over state-of-the-art baselines with
respect to answer presence, size of the search space, and runtimes.
- Abstract(参考訳): 知識ベース(KB-QA)に関する複雑な疑問に答えるには、数百万のエンティティと数千の述語を含む何十億もの事実を含む膨大な入力データに直面する。
効率性のために、QAシステムはまず、すべての回答と関連する手がかりを含む可能性のある事実の集合を特定することによって、回答検索空間を縮小する。
最も一般的なテクニックは、名前付きエンティティ曖昧化(NED)システムを問題に適用し、曖昧なエンティティに対してKB事実を検索することである。
本研究は,KB対応信号を用いて検索空間の無関係な部分を抽出する効率的なECQAを提案する。
ECQAは、語彙マッチング、質問への関連性、候補項目間のコヒーレンス、KBグラフの接続性といった信号を組み合わせたKB項目のスコア順リスト上のトップkクエリ処理に基づいている。
最近の2つのQAベンチマークによる実験は、解答の有無、検索空間のサイズ、ランタイムに関して、最先端のベースラインよりもECQAの方が優れていることを示している。
関連論文リスト
- MarkQA: A large scale KBQA dataset with numerical reasoning [11.072552105311484]
本稿では,マルチホップ推論と数値推論の両方を実行する機能を必要とする新しいタスクNR-KBQAを提案する。
PyQLと呼ばれるPython形式で論理形式を設計し、数値推論問題の推論プロセスを表現する。
我々は、小さな種子から自動的に構築されるMarkQAと呼ばれる大規模なデータセットを提示する。
論文 参考訳(メタデータ) (2023-10-24T04:50:59Z) - Two is Better Than One: Answering Complex Questions by Multiple
Knowledge Sources with Generalized Links [31.941956320431217]
複数KB間の全リンクと部分リンクを利用して正しい回答を導出する新しいMulti-KB-QAタスクを定式化する。
そこで本研究では,KB埋め込みのすべてのリンク関係を符号化して,候補解のスコアとランク付けを行うマルチKB-QAを提案する。
論文 参考訳(メタデータ) (2023-09-11T02:31:41Z) - BigText-QA: Question Answering over a Large-Scale Hybrid Knowledge Graph [23.739432128095107]
BigText-QAは構造化知識グラフに基づいて質問に答えることができる。
その結果,BigText-QAはニューラルネットワークベースのQAシステムであるDrQAよりも優れており,グラフベースの教師なしQAシステムであるQUESTと競合する結果が得られた。
論文 参考訳(メタデータ) (2022-12-12T09:49:02Z) - UniKGQA: Unified Retrieval and Reasoning for Solving Multi-hop Question
Answering Over Knowledge Graph [89.98762327725112]
KGQA(Multi-hop Question Answering over Knowledge Graph)は、自然言語の質問で言及されているトピックエンティティから、複数のホップを持つ回答エンティティを見つけることを目的としている。
我々は、モデルアーキテクチャとパラメータ学習の両方において、検索と推論を統合することで、マルチホップKGQAタスクの新しいアプローチであるUniKGQAを提案する。
論文 参考訳(メタデータ) (2022-12-02T04:08:09Z) - TIARA: Multi-grained Retrieval for Robust Question Answering over Large
Knowledge Bases [20.751369684593985]
TIARAは、PLMやオラクルエンティティアノテーションなどを含む以前のSOTAよりも、GrailQAおよびWebQuestionsSP上の少なくとも4.1と1.1のF1ポイントが優れている。
論文 参考訳(メタデータ) (2022-10-24T02:41:10Z) - Knowledge Base Question Answering by Case-based Reasoning over Subgraphs [81.22050011503933]
本モデルでは,既存のKG補完アルゴリズムよりも複雑な推論パターンを必要とする問合せに対して,より効果的に答えることを示す。
提案モデルは、KBQAベンチマークの最先端モデルよりも優れているか、競合的に動作する。
論文 参考訳(メタデータ) (2022-02-22T01:34:35Z) - A Benchmark for Generalizable and Interpretable Temporal Question
Answering over Knowledge Bases [67.33560134350427]
TempQA-WDは時間的推論のためのベンチマークデータセットである。
Wikidataは、最も頻繁にキュレーションされ、公開されている知識ベースである。
論文 参考訳(メタデータ) (2022-01-15T08:49:09Z) - Effective FAQ Retrieval and Question Matching With Unsupervised
Knowledge Injection [10.82418428209551]
質問に対して適切な回答を得るための文脈言語モデルを提案する。
また、ドメイン固有の単語間のトポロジ関連関係を教師なしの方法で活用することについても検討する。
提案手法のバリエーションを,公開可能な中国語FAQデータセット上で評価し,さらに大規模質問マッチングタスクに適用し,コンテキスト化する。
論文 参考訳(メタデータ) (2020-10-27T05:03:34Z) - Open Question Answering over Tables and Text [55.8412170633547]
オープンな質問応答(QA)では、質問に対する回答は、質問に対する回答を含む可能性のある文書を検索して分析することによって生成される。
ほとんどのオープンQAシステムは、構造化されていないテキストからのみ情報を取得することを検討している。
我々は,このタスクの性能を評価するために,新しい大規模データセット Open Table-and-Text Question Answering (OTT-QA) を提案する。
論文 参考訳(メタデータ) (2020-10-20T16:48:14Z) - KQA Pro: A Dataset with Explicit Compositional Programs for Complex
Question Answering over Knowledge Base [67.87878113432723]
複雑KBQAのためのデータセットであるKQA Proを紹介する。
各質問に対して、対応するKoPLプログラムとSPARQLクエリを提供するので、KQA ProはKBQAとセマンティック解析の両方に役立ちます。
論文 参考訳(メタデータ) (2020-07-08T03:28:04Z) - Differentiable Reasoning over a Virtual Knowledge Base [156.94984221342716]
コーパスを仮想知識ベース(KB)として,複雑なマルチホップ質問に答えるタスクについて検討する。
特に、コーパス内のエンティティの参照間の関係の経路をソフトに追従し、KBのようにテキストデータをトラバースするDrKITについて述べる。
DrKITは非常に効率的で、既存のマルチホップシステムよりも毎秒10-100倍のクエリを処理する。
論文 参考訳(メタデータ) (2020-02-25T03:13:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。